является чистым антиферромагнетиком с равным нулю суммарным магнитным моментом, и поэтому гематитовая фаза в образцах биотита при 4,2 К не дает вклада в намагниченность, а ее образование ведет к уменьшению числа парамагнитных ионов.

Заключение

Показано, что основными процессами, протекающими в биотите при термической обработке и формирующими зависимости его магнитной восприимчивости от температуры и времени термической обработки, могут быть следующие: окисление ионов Fe²⁺ до трехвалентного состояния; образование в биотите субмикронеоднородной структуры путем агрегации части ионов Fe³⁺ вокруг вакансий с переходом этих ионов в спин-спаренное состояние; образование при высоких температурах гематитовой фазы и выделение частиц гематита при охлаждении образцов биотита до комнатной температуры.

Литература

- 1. Азимов З.А., Гаипов Б.Н., Данилов А.В. и др. // Докл. АН УзССР. 1988. № 6. С. 29.
- Усманов М.Х. // Пожаровзрывобезопасность. 1997. № 4. С. 24.
- Bruschlinsky N.N., Danilov A.V., Muminov K.M. et al. // Fire Technology. 1997. 33, No. 3. P. 195.

- Аминов А.А., Данилов А.В., Скачкова Л.А. и др. // ДАН УзССР. 1988. № 8. С. 31.
- 5. *Бельштерли М.К., Турцева А.А.* // Тр. Ин-та геол. наук АН СССР. 1940. № 44. Петрогр. серия, № 14.
- 6. Иваницкий В.П., Калиниченко А.М., Матяш И.В. Изучение механизма окисления и дегидроксилации некоторых слюд. Киев: Изд. АН УССР, 1975.
- 7. Калиниченко А.М., Литовченко А.С., Мяташ И.В. и др. Особенности кристаллохимии слоистых алюмосиликатов по данным радиоспектроскопии. Киев: Наукова думка, 1974.
- 8. Barshad I, Kishk F.M. // Science. 1968. 71. P. 1401.
- 9. *Третьяков Ю.Д.* Термодинамика ферритов. Л.: Химия, 1967.
- Krzanovsky W.J., Newman A.C.D. // Miner. Mag. 1972. 38.
 P. 926.
- Усманов М.Х., Абдурахманов У., Шарипов Ш.М. и др. Актуальные проблемы пожарной безопасности и подготовки кадров: Матер. научн.-практ. конф. Ташкент: ВПТШ МВД РУз, 1995. С. 173.
- 12. Крупичка С. Физика ферритов и родственных им магнитных окислов. М.: Мир, 1976.
- Усманов М.Х., Югай В.П., Грановский А.Б. и др. // ДАН УзССР. 1989. № 8. С. 31.

Поступила в редакцию 16.05.01

УДК 538.245

ИЗМЕРЕНИЯ МАГНИТНЫХ ПАРАМЕТРОВ ФЕРРОМАГНИТНЫХ ПЛЕНОК

Л.И. Антонов, Л.М. Коренкова, Т.Н. Летова, И.М. Сараева, Д.Г. Скачков

(кафедра общей физики для физического факультета)

E-mail: skachkov@genphys.phys.msu.su

Представлен новый метод вычислений магнитных параметров ферромагнитной пленки, основанный на измерениях вращающего механического момента, действующего на пленку в условиях ее равновесия в магнитном поле.

Введение

Измерение магнитных параметров ферромагнитных пленок необходимо, с одной стороны, для контроля магнитных свойств пленок в процессе их производства, с другой — для изучения механизмов магнитного упорядочения и характера протекающих в пленках процессов.

Основными параметрами ферромагнитных пленок являются спонтанная намагниченность M_s [1] и постоянная магнитной анизотропии K [2, № 93], а также их удвоенное отношение $H_K = \frac{2K}{M_s}$, называемое полем анизотропии.

Очень часто для определения этих параметров используются косвенные методы, например метод, основанный на коллапсе [2, №251] цилиндрического магнитного домена [3] или на ферромагнитном резонансе [4], и др. Однако существует прямой метод измерения, связанный с определением пондеромоторного взаимодействия намагниченного магнетика с внешним магнитным полем [5]. Основу этого метода, отличающегося простотой и высокой точностью, составляет магнитный вращательный (торсионный) магнитометр [6], работа которого связана с определением вращательного механического момента, действующего на пленку во внешнем магнитном поле, по углу ψ закручивания нити подвеса с известной постоянной кручения D ($L_{mech} = D\psi$).

Общая схема работы такого магнитометра показана на рис. 1 и 2, которые различаются лишь способом подвеса магнитной пленки, связанным

с характером ее магнитной анизотропии. В первом случае при вращении магнитного поля относительно пленки (или пленки относительно поля) вектор напряженности поля остается практически параллельным ее плоскости, во втором — перпендикулярным. Обычно выбор ориентации пленки на подвесе определяется положением оси легкого намагничивания (ОЛН) [2, №97]: лежит ли она в плоскости пленки (ось x, рис. 1) или перпендикулярна ей (ось z, рис. 2). Для создания внешнего однородного по объему пленки магнитного поля используется электромагнит с керном из магнитно-мягкого материала [1; 2, № 449], позволяющий изменять величину напряженности магнитного поля в интервале $10 \div 2 \cdot 10^4$ Э. Поскольку пленка на подвесе обладает лишь одной степенью свободы, характеризуемой углом γ , который образует характерное направление в пленке (обычно ОЛН) с направлением вектора напряженности внешнего магнитного поля, то действующие на пленку механические моменты в условиях ее равновесия также имеют одномерный характер.

По данным измерений обычно строятся кривые зависимости вращательного механического момента $L_{\rm mech}$ от величины напряженности магнитного поля H при фиксированной ориентации пленки γ :

$$L_{\text{mech}} = L(H) \quad (\gamma = \text{const})$$
 (1)

или кривые зависимости L от γ при фиксированном значении H:

$$L_{\text{mech}} = L(\gamma) \quad (H = \text{const}).$$
 (2)

Во втором случае обычно используется внешнее поле, существенно превышающее поле анизотропии $(H \ge 5H_K)$. Тогда при изменении γ от 0 до 2π кривая $L(\gamma)$ позволяет определить характер магнитной анизотропии и величину постоянной анизотропии. Используемый в такой схеме магнитометр называют анизометром [7, с. 448]. Для одновременного определения K и M_s анализируются кривые $L_{\rm mech} = L(H)$ при $\gamma = {\rm const}$, кривизна которых, а также их аппроксимация к значению H = 0 позволяют вычислить величину этих параметров. Такая методика использовалась ранее при $\gamma = 0.12$ [8] и при $\gamma = \pi/4$ [9, 10]. Серьезным недостатком перечисленных методов является неточность определения участка кривых, выбираемого для экстраполирования, поскольку экспериментальные зависимости L(H) (или $\frac{L}{H}(H)$ и $\frac{H}{L}(H)$) существенно нелинейные, особенно в области малых ($H \leq H_K$) и средних полей, когда проявляются отклонения от модели однородной намагниченности.

В настоящей работе предложен новый метод вычисления величин K и M_s , а также их отношения H_K из массива данных измерений $L_i(H_i)$ при $\gamma \ll 1$, где $i = 1, 2, \ldots, N$ и N — число измерений.

Теоретическое обоснование метода

Для теоретического описания кривых вращательного момента используется модель однородной намагниченности: полагается, что в объеме пленки вектор намагниченности [2, №5] постоянен: $\mathbf{M} = \mathrm{const}$.

Эта модель является хорошим приближением, поскольку внешнее поле всегда можно выбрать таким, чтобы оно превышало поле насыщения намагниченности. Основу метода составляют уравнение ориентационного равновесия вектора намагниченности [5] (микромагнитное уравнение [11])

$$[\mathbf{M}, \mathbf{H}^{\text{eff}}] = 0$$

и уравнение механического равновесия пленки на подвесе

$$\mathbf{L}_{\mathrm{mech}} + \mathbf{L}' = 0,$$

где \mathbf{H}^{eff} — эффективное магнитное поле, состоящее из внешнего поля \mathbf{H} , эффективного поля магнитной анизотропии [2, $\mathbb{N} \ 94$] и магнитного поля собственного диполь-дипольного взаимодействия \mathbf{H}_m [2, $\mathbb{N} \ 350$]; \mathbf{L}' — вращательный механический момент, действующий на пленку (решетку атомов) вследствие взаимодействия магнитного момента пленки с магнитным полем. С учетом того, что в соответствии с законами механики $\mathbf{L}' + \mathbf{L} = 0$, где \mathbf{L} — механический момент, действующий на намагниченность со стороны магнитной пленки, $|\mathbf{L}_{mech}| = |\mathbf{L}|$.

Для одномерного механического момента в случаях, показанных на рис. 1 и 2, при одноосной магнитной анизотропии [2, \mathbb{N} 102] и ОЛН, направленной вдоль оси x и z соответственно, можно записать:

в первом случае [5]

$$\left. \begin{array}{l} L_{\rm mech} = \tau K_{\parallel} \sin(2\varphi), \\ M_s H \sin(\alpha - \varphi) - K_{\parallel} \sin 2\varphi = 0, \end{array} \right\}$$
(3)

во втором случае [6]

$$L^*_{\text{mech}} = \tau K^* \sin(2\theta),$$

$$M_s H \sin(\beta - \theta) - K^* \sin 2\theta = 0,$$
(4)

где $K^* = K_\perp - 2\pi M_s^2$ — постоянная анизотропии с учетом анизотропии формы пленки [2, № 108].

Записанные системы уравнений имеют эквивалентную форму, когда

$$L = L_{\text{mech}} = \tau K \sin(2\gamma), 2h \sin(\gamma - \xi) = \sin 2\xi,$$
(5)

и при $\gamma=lpha,\ \xi=arphi,\ K=K_{||}$ и $h=rac{H}{2K_{||}/M_s}$ получаем систему (3), а при $\gamma = \beta$, $\xi = \theta$, $K = K_{\perp} - 2\pi M_s^2$ и $h = \frac{H}{2(K_{\perp} \perp 2\pi M_s^2)/M_s}$ — систему (4). Если $\gamma \ll 1$, то в случае, когда $\xi < \gamma$, будет $\xi \ll 1$. Тогда $\xi = \frac{h}{h+1}\gamma$, и решение системы (5) имеет

ВИД

$$z = h + 1,$$

где $z=2K\tau\gamma\frac{h}{L}$ или $z=M_s\tau\gamma\frac{H}{L}$. Из общего массива N измерений величин L_i , H_i при $\gamma = \text{const}$, где $i = 1, 2, \dots, N$, можно выделить две произвольные точки, например точки «1» и «2», для которых с учетом того, что $z_1 = h_1 + 1$ и $z_2 = h_2 + 1$, имеем тождества $z_2 - z_1 = h_2 - h_1$ и $z_1h_2 - z_2h_1 = h_2 - h_1$. Эти тождества позволяют записать соответствующие им соотношения:

$$(2K)_{21} = \frac{1}{\tau\gamma} \frac{L_2 L_1 (H_2 - H_1)}{H_2 L_1 - H_1 L_2},\tag{6}$$

$$(M_s)_{21} = \frac{1}{\tau \gamma} \frac{L_2 L_1 (H_2 - H_1)}{H_2 H_1 (L_2 - L_1)},\tag{7}$$

$$(H_K)_{21} = \frac{H_2 H_1 (L_2 - L_1)}{H_2 L_1 - H_1 L_2},\tag{8}$$

которые определяют значения 2K, M_s и H_K для выделенных двух точек измерения. Последующая статистическая обработка полученных результатов вычислений для множества пар точек измерения позволяет существенно снизить ошибку вычислений.

Экспериментальная проверка метода

Экспериментальная процедура определения магнитных параметров пленки в соответствии с формулами (6)-(8) имеет следующую последовательность:

1) магнитная пленка закрепляется на подвесе так, как указано на рис. 1 или 2, в зависимости от характера ее одноосной анизотропии;

2) путем поворота магнитного поля или подвеса с магнитной пленкой устанавливается параллельность направления поля Н и ОЛН; при этом величина вращательного механического момента, действующего на пленку при любом значении поля, равна нулю;

3) устанавливается фиксированный угол ($\gamma \approx$ ≈ 0.012 рад), контролируемый по отраженному от подвеса лучу света;

4) включается максимально возможная напряженность магнитного поля и при уменьшении поля для каждого его значения H_i по углу закручивания нити ψ_i определяется компенсирующий вращательный механический момент $L_i = D\psi_i$, удерживающий пленку в равновесии ($\gamma = \text{const}$).

Таким образом получают массив из N значений H_i и соответствующих L_i .

Далее, для каждой пары из N измерений по формулам (6)-(8) при известном объеме пленки рассчитываются величины K, Ms и HK. Необходимое для вычисления объема пленки значение ее толщины для тонких пленок определяется обычно интерференционным методом Толанского [12]. Обработанный методом наименьших квадратов набор вычисленных значений K, Ms и HK дает их средние значения с наименьшей ошибкой.

При вычислениях K_{\perp} , M_s и $H_{K_{\perp}}$ из массива значений (H_i, L_i), полученных в эксперименте по схеме, изображенной на рис. 2, необходимо учитывать влияние парамагнетизма подложки магнитной пленки на величину вращательного механического момента. Величина парамагнитного момента для некоторых пленок, в частности пленок с малой спонтанной намагниченностью, сравнима, а иногда и превышает (особенно в сильных полях) момент, действующий на магнитную пленку. Вращательный момент, действующий на парамагнитный сфероид, сплюснутый вдоль оси z, равен [5]

$$L_0 = rac{1}{2} au_0 \chi^2 rac{N_z - N_x}{(1 + \chi N_z)(1 + \chi N_x)} H^2 \sin 2eta,$$

и для подложки в форме диска, факторы формы которого равны $N_x \cong 0$ и $N_z \cong 4$, имеем:

$$L_0=2\pi au_0rac{\chi^2}{1+4\pi\chi}H^2\sin2eta.$$

Здесь au_0 — объем подложки и χ — ее парамагнитная восприимчивость.

Таким образом, на пленку с подложкой действует вращательный момент, равный

$$L = L_{\rm mech} + L_0 = K_{\rm ef} \sin 2\gamma,$$

где

$$K_{\rm ef} = K\tau + \frac{2\pi\chi^2 H^2}{1 + 4\pi\chi}\tau_0$$

Обычно парамагнитный момент учитывается следующим образом: предварительно его измеряют для подвеса с подложкой (без магнитной пленки), а затем вычитают из общего момента, действующего на магнитную пленку на подложке.

В таблице приведены значения M_s и K для трех одноосных магнитных пленок ферритов-гранатов, определенные различными способами.

Параметры	Номер пленки			Метод
Tupune i pbi	1	2	3	определения
M_s , Γc	40	90	55	[8]
	40	91	50	По формуле (6)
$K_{\perp}\cdot 10^{\perp3}$, эрг \cdot см $^{\perp3}$	33	56	17	По амплитуде кривой (2) ^{*)}
	32	61	20	По формуле (7)

 $^{*)}$ Амплитуда кривой определяется разностью между максимальным и минимальным значениями $L_{\rm mech}.$

Заключение

Предложенный в работе метод вычисления магнитных параметров пленок при торсионных измерениях применим только для одноосных магнитных пленок. Однако, в принципе, аналогичное вычисление можно выполнить для магнитных пленок с любым сложным типом магнитной анизотропии. Для этого необходимо предварительно определить характер магнитной анизотропии, используя технику анизометра [7], на основе уравнения (2), затем для энергии магнитной анизотропии, как правило, на основе феноменологических соотношениий [2, раздел IV] записать уравнения, аналогичные (3) и (4), или эквивалентное им уравнение (5). Далее, используя соответствующее значению (1) определение эффективного поля магнитной анизотропии $\mathbf{H}_{\mathrm{an}}=-rac{\delta W_{\mathrm{an}}}{\delta \mathbf{M}}$, где W_{an} — плотность энергии магнитной анизотропии, можно записать соотношения, аналогичные (6) и (7). Таким образом, приведенная техника вычислений является универсальной для широкого класса магнитных пленок, используемых как для промышленных, так и для научных целей.

Литература

- Антонов Л.И., Больных И.К., Дурасова Ю.А. и др. Изучение магнитного состояния ферромагнетика и определение его технических свойств: Препринт физ. ф-та МГУ № 1/2000. М., 2000.
- Магнетизм и магнитные материалы: Терминологический справочник / Под ред. Ф.В. Лисовского и Л.И. Антонова. М.: Вагриус, 1997.
- 3. Thiele A.A. // Bell System Techn. J. 1971. 50, No. 3. P. 725.
- Антонов Л.И., Лукашева Е.В., Миронова Г.А., Малова Т.И. Изучение явления ферромагнитного резонанса (ФМР) и определение характера магнитной анизотропии ферромагнитного монокристалла: Препринт физ. ф-та МГУ № 5/1999. М., 1999.
- 5. Антонов Л.И., Миронова Г.А., Лукашева Е.В., Селиверстов А.В. Энергия и силы в магнитостатике магнетиков: Препринт физ. ф-та МГУ № 6/1999. М., 1999.
- 6. Телеснин Р.В., Рыбак Е.Н., Сараева И.М. // Приб. и техн. эксперимента. 1965. № 3. С. 236.
- 7. Бозорт Р. Ферромагнетизм. М.: ИЛ, 1956.
- 8. Chikazumi S. // J. Appl. Phys. 1961. 32, No. 3, Suppl. P. 81S.
- Hideki Miyajima, Katuso Sato // J. Appl. Phys. 1976. 47. P. 4669.
- 10. Neugebauer C.A. // Phys. Rev. 1959. 116, No. 6. P. 1441.
- 11. Браун У.Ф. Микромагнетизм. М.: Мир, 1979.
- 12. Дудоров В.Н., Дурасова Ю.А., Зимачева С.М. и др. // Приб. и техн. эксперимента. 1976. № 6. С. 179.

Поступила в редакцию 23.05.01

УДК 543.422.27

ВЛИЯНИЕ ЗАРЯЖЕННЫХ ПОВЕРХНОСТНЫХ ЭЛЕКТРОННЫХ СОСТОЯНИЙ НА СТРУКТУРУ ТОНКИХ ПЛЕНОК ЛЕНГМЮРА-БЛОДЖЕТТ НА ПОВЕРХНОСТИ ПОЛУПРОВОДНИКОВ

В.В. Беляев, В.Б. Зайцев, Т.В. Панова, Г.С. Плотников, М.Л. Занавескин

(кафедра общей физики и молекулярной электроники) E-mail: plot@vega.phys.msu.su

Изучены электрофизические свойства и структура пленок стеарата меди, нанесенных на поверхность полупроводников (германий, кремний) методом Ленгмюра–Блоджетт (ЛБ). Показано, что в ЛБ-пленках имеются центры захвата для электронов, перезаряжающиеся при фотоинжекции носителей заряда из объема полупроводника. Установлено, что перезарядка этих центров приводит к упорядочению структуры нанесенных слоев стеарата меди.

Исследование тонких органических пленок вызывает неослабевающий интерес, что фактически привело к возникновению новой междисциплинарной области науки — изучению процесса их образования, структуры, физических свойств и практических приложений. Одним из наиболее перспективных путей получения тонких упорядоченных пленок является метод Ленгмюра-Блоджетт [1]. Применение пленок ЛБ возможно в самых различных областях техники, в частности при создании сенсоров, различных устройств микро- и молекулярной электроники [2, 3]. В последнем случае эти пленки