на a_u и a_u на a_x . В случае квадратной линзы

$$E_{fx}^{(4)} = \frac{2bA}{B} \left[\frac{a}{B} K_1 \left(\frac{a}{B} \right) - 2K_0 \left(\frac{a}{B} \right) \right]$$
(20)

И

$$E_{fx}^{(4)} = \frac{2Z_1 Z_2 e^2 b}{a_s^2} \sum_{i=1}^3 \alpha_i \beta_i^2 K_0 \left(\beta_i \frac{a}{a_s}\right)$$
(21)

для потенциалов Борна-Майера и Мольера соответственно.

Энергия фокусировки трех- и двухатомной линзы определяется выражениями

$$E_{fx}^{(3)} = E_{fx}^{(2)} = \frac{2bA}{B} \left[\frac{a}{B} K_1 \left(\frac{a}{B} \right) - K_0 \left(\frac{a}{B} \right) \right]$$
(22)

И

$$E_{fx}^{(3)} = E_{fx}^{(2)} = \frac{2Z_1 Z_2 e^2 b}{a a_s} \sum_{i=1}^3 \alpha_i \beta_i \left[\gamma_i K_0(\gamma_i) + K_1(\gamma_i) \right]$$
(23)

для потенциалов Борна-Майера и Мольера соответственно.

Для случаев рассеяния пучка ионов парой атомов и парой атомных цепочек в работах [5, 6] проведено сравнение с результатами численных расчетов, выполненных путем интегрирования уравнений движения ионов в поле атомов (цепочек атомов), т.е. без тех упрощающих предположений, что сделаны выше. Хорошее согласие аналитической теории и моделирования, которое было достигнуто, казалось бы, противоречит выводу Томпсона [4, 15] о том, что импульсное приближение является грубым для описания линзовой фокусировки. В действительности противоречия нет, поскольку в [4, 15] рассмотрена фокусировка расходящегося пучка частиц, источник которого находится непосредственно в поле атомной линзы. В случае параллельного пучка, рассмотренного в данной работе, фокусировка частиц в заданную точку происходит при меньших углах рассеяния и, следовательно, больших энергиях по сравнению со случаем расходящегося пучка. С уменьшением угла рассеяния точность импульсного (малоуглового) приближения возрастает, чем и объясняется хорошее согласие теории и моделирования.

Литература

- 1. Линдхард Й. // УФН. 1969. **99**. Р. 249.
- 2. Martynenko Yu.V. // Rad. Eff. 1973. 20. P. 221.
- 3. Oen O.S. // Surf. Sci. 1983. 131. P. L407.
- 4. Томпсон М. Дефекты и радиационные повреждения в металлах. М.: Мир, 1971.
- 5. Shulga V.I. // Rad. Eff. 1975. 26. P. 61.
- 6. Shulga V.I. // Rad. Eff. 1978. 37. P. 1.
- 7. Shulga V.I. // Rad. Eff. 1986. 100. P. 71.
- 8. Лусников А.В., Шульга В.И. Взаимодействие атомных частиц с твердым телом. Минск: Изд-во МРТИ, 1978. С. 69.
- 9. Машкова Е.С., Молчанов В.А., Шульга В.И. // ЖТФ. 1982. **52**. Р. 532.
- 10. Шульга В.И. // ЖТФ. 1982. **52**. Р. 534.
- Broomfield K., Stansfield R.A., Clary D.C. // Surf. Sci. 1988.
 202. P. 320.
- 12. Ландау Л.Д., Лифшиц Е.М. Механика. М.: Наука, 1965.
- Wilson W.D., Haggmark L.G., Biersack J.P. // Phys. Rev. 1977. B15. P. 2458.
- 14. Ziegler J.F., Biersack J.P., Littmark U. / Ed. J.F. Ziegler. The Stopping and Range of Ions in Solids. Vol. 1. N. Y.: Pergamon Press, 1985.
- Nelson R.S., Thompson M. W. // Proc. Roy. Soc. 1961. A259. P. 458.

Поступила в редакцию 19.12.01

ОПТИКА И СПЕКТРОСКОПИЯ

УДК 535.375.55+539.194

РАЗНОСТЬ ПОЛЯРИЗУЕМОСТЕЙ КАК ХАРАКТЕРИСТИКА КОМБИНАЦИОННО-АКТИВНЫХ СВОЙСТВ МОЛЕКУЛЫ

С.Ю. Никитин

(кафедра общей физики и волновых процессов)

Показано, что разность поляризуемостей в состояниях, образующих комбинационно-активный переход, является удобной характеристикой свойств молекулы в отношении комбинационного рассеяния света. Получены выражения для удельного коэффициента усиления вынужденного комбинационного рассеяния и сечения спонтанного комбинационного рассеяния через разность поляризуемостей. Сделаны численные оценки для водорода.

Введение

Теоретический расчет сечения спонтанного комбинационного рассеяния (СКР) света на молекуле $d\sigma/d\Omega$ и коэффициента усиления вынужденного комбинационного рассеяния (ВКР) g в молекулярной среде представляет собой трудную задачу. В приближении Плачека сечение СКР выражается через матричный элемент тензора поляризуемости молекулы [1]. Тензор поляризуемости выражается формулой Крамерса-Гейзенберга через матричные элементы оператора дипольного момента, вычисление которых, в свою очередь, требует знания электронных волновых функций системы. Для отыскания волновых функций необходимо решить уравнение Шрёдингера. Однако решить это уравнение сложно, поскольку даже для простейшей молекулы — молекулы водорода — электронная волновая функция зависит от шести независимых переменных (координаты электронов) и одного параметра (межъядерное расстояние).

В связи с этим представляют интерес приближенные методы, позволяющие вычислять параметры $d\sigma/d\Omega$ и g или хотя бы оценивать их по порядку величины. Один из таких методов излагается ниже. Основная идея предлагаемого подхода состоит в том, что сечение СКР и коэффициент усиления ВКР можно связать с разностью поляризуемостей молекулы в состояниях, образующих комбинационно-активный переход. Последняя величина может быть оценена с помощью модели классического осциллятора. Для простоты будем пренебрегать анизотропией молекулы.

1. Основная идея

В теории вынужденного комбинационного рассеяния света на молекулярных колебаниях (см., напр., [2]) важную роль играет величина $\alpha' q_{12}$, где $\alpha' = (\partial \alpha / \partial q)_{q=0}$ — производная электронной поляризуемости молекулы α по ядерной координате q, взятая в положении равновесия ядер, q_{12} матричный элемент колебательной координаты q. В приближении гармонического осциллятора

$$q_{12} = \sqrt{\hbar/2M\omega_0},\tag{1}$$

где M — приведенная масса осциллятора, ω_0 — частота молекулярных колебаний, \hbar — постоянная Планка.

В силу соотношения $\alpha(q) = \alpha_0 + \alpha'q$ величина $\alpha'q_{12}$ имеет смысл матричного элемента поляризуемости, т.е. $\alpha'q_{12} = \alpha_{12}$. Если приравнять энергию классического осциллятора $M\omega_0^2 A^2/2$ к энергии колебательного перехода молекулы $\hbar\omega_0$, то получим $A = \sqrt{2\hbar/M\omega_0}$. Поскольку величины q_{12} и A совпадают с точностью до коэффициента 1/2, матричный элемент колебательной координаты q_{12} на классическом языке можно интерпретировать как амплитуду колебаний молекулярного осциллятора. Но тогда α_{12} есть амплитуда колебаний поляризуемости или разность поляризуемостей молекулы в состояниях, образующих комбинационно-активный переход:

$$\alpha' q_{12} = \alpha_{12} = \Delta \alpha. \tag{2}$$

Последнюю величину можно оценить с помощью модели классического осциллятора. В самом деле,

согласно этой модели, поляризуемость атома выражается в виде

$$\alpha(\omega) = \frac{e^2}{m} \frac{1}{(\omega_e^2 - \omega^2)}.$$
(3)

Здесь ω — частота поля, ω_e — собственная частота колебаний электрона в атоме, e и m — заряд и масса электрона. В принципе эту формулу можно применить и к молекуле, понимая под ω_e частоту молекулярного электронного перехода (что подтверждается, в частности, расчетом показателя преломления для водорода [2]). Отсюда разность поляризуемостей можно записать в виде

$$\Delta\alpha(\omega) = \frac{e^2}{m} \left[\frac{1}{(\omega_e - \omega_0)^2 - \omega^2} - \frac{1}{\omega_e^2 - \omega^2} \right].$$
(4)

Данная формула выражает тот факт, что колебательно-возбужденная молекула имеет несколько меньшую частоту электронного перехода, а потому обладает большей поляризуемостью, чем невозбужденная молекула. Если частота электронного перехода значительно превышает частоту поля и частоту колебательного перехода, т. е. $\omega_e \gg \omega, \omega_0$, то с хорошей точностью справедлива более простая оценка:

$$\Delta \alpha = \alpha(\omega) \frac{2\omega_0}{\omega_e}.$$
 (5)

2. Спонтанное комбинационное рассеяние

Сечение СКР связано с молекулярными параметрами рассеивающей среды формулой [3]

$$\frac{d\sigma}{d\Omega} = \frac{\hbar}{2M\omega_0} (\alpha')^2 \frac{\omega_s^4}{c^4},\tag{6}$$

где ω_s — частота стоксовой компоненты КР. Используя формулы (1), (2), перепишем это выражение в виде

$$\frac{d\sigma}{d\Omega} = (\Delta \alpha)^2 \, \frac{\omega_s^4}{c^4}.\tag{7}$$

Отсюда следует, что

$$\left(\frac{d\sigma}{d\Omega}\right)\nu_s^{-4} = (2\pi)^4 (\Delta\alpha)^2,\tag{8}$$

где $\nu_s = \omega_s/2\pi c$ — частота стоксовой компоненты KP, измеряемая в обратных сантиметрах.

3. Вынужденное комбинационное рассеяние

Стандартное выражение для удельного коэффициента усиления ВКР имеет вид (см., напр., [2])

$$g = \frac{4\pi^2 N(\alpha')^2 T_2 \omega_s}{M \omega_0 c^2 n_p n_s},\tag{9}$$

где N — число молекул в единице объема среды, T_2 — время дефазировки молекулярных колебаний, n_p и n_s — показатели преломления среды на частотах накачки и стоксовой компоненты ВКР. Данное выражение записано в предположении, что все молекулы среды комбинационно-активны. В общем случае в правую часть формулы (9) следует добавить множитель $\rho_{11} - \rho_{22}$, имеющий смысл разности населенностей на комбинационно-активном переходе. С учетом формул (1), (2) удельный коэффициент усиления ВКР выражается через разность поляризуемостей следующим образом:

$$g = \frac{16\pi^3}{c\hbar} (\rho_{11} - \rho_{22}) \frac{(\Delta \alpha)^2 N T_2}{n_p n_s} \nu_s.$$
(10)

4. Колебательный переход молекулы водорода

Рассмотрим в качестве примера колебательный переход $Q_{01}(1)$ молекулы водорода. Частота перехода $\mu_0 = 4155$ см⁻¹. Как показано в работе [4], для этого перехода

$$\Delta \alpha = 0.139 \cdot 10^{-24} \text{ cm}^3. \tag{11}$$

Подставив (11) в (8), получим $(d\sigma/d\Omega)\nu_s^{-4} = 30 \times 10^{-48}$ см⁶/ср. Согласно данным, приведенным в работе [5], экспериментально измеренное значение этой величины (для накачки видимого диапазона) $(d\sigma/d\Omega)\nu_s^{-4} = 20 \cdot 10^{-48}$ см⁶/ср.

В пределе высоких давлений параметр NT_2 можно оценить следующим образом [6]: $NT_2 = 1.89 \times 10^{11}$ см⁻³ с. Согласно [7], при комнатной температуре $\rho_{11} - \rho_{22} = 0.67$. По формулам (10), (11) получаем g (см/Вт) = $3.8 \cdot 10^{-13} \nu_s$, где ν_s — частота стоксовой компоненты, выраженная в см⁻¹. Как сообщалось в работе [7], экспериментально измеренное значение этой величины g (см/Вт) = $2.0 \cdot 10^{-13} \nu_s$.

Итак, формулы (7), (10) удовлетворительно согласуются с экспериментальными данными по водороду.

5. Упрощенная оценка разности поляризуемостей

Используя модель классического осциллятора (3)-(5), разность поляризуемостей на переходе можно оценить следующим образом:

$$\Delta \alpha(\nu) = \frac{1}{\beta^3} 8a_0^3 \frac{(\nu_0/\nu_R)}{1 - (\nu/\beta\nu_R)^2},$$
(12)

где ν — частота поля, $a_0 = \hbar^2/me^2 = 0.53 \cdot 10^{-8}$ см — боровский радиус, $\beta = \nu_e/\nu_R$ — частота электронного перехода молекулы, отнесенная к постоянной Ридберга $\nu_R = me^4/4\pi c\hbar^3 = 1.09 \cdot 10^5$ см⁻¹, ν_0 — частота комбинационно-активного перехода. Вели-

чину β следует рассматривать как подгоночный параметр. Для грубой оценки можно положить $\beta = 1$, тогда разность поляризуемостей выражается только через физические константы, частоту поля и частоту комбинационно-активного перехода.

Например, полагая $\beta = 1$, $\nu = 0$, $\nu_0 = 4155$ см⁻¹, для статической разности поляризуемостей на колебательном переходе молекулы водорода получим $\Delta \alpha = 0.046 \cdot 10^{-24}$ см³, что примерно втрое меньше оценки (11). Совпадение оценок получится при $\beta = 0.69$. Заметим также, что подстановка (12) в (10) приводит к зависимости удельного коэффициента усиления ВКР от частоты излучения накачки ν_p вида $g \sim (\text{const} - \nu_p^2)^{-2}$, что совпадает с зависимостью $g(\nu_p)$, найденной экспериментально в работе [7].

Заключение

В настоящей работе получены формулы, выражающие сечение СКР и коэффициент усиления ВКР через разность поляризуемостей молекулы на комбинационно-активном переходе. Проведена проверка этих формул путем сравнения результатов расчета с экспериментальными данными для колебательного перехода молекулы водорода. Предложен упрощенный способ оценки разности поляризуемостей молекулы на комбинационно-активном переходе.

Автор благодарен А.Ф. Бункину, А.С. Грабчикову, Г.М. Михееву, В.Б. Морозову, В.И. Прялкину и В.Д. Таранухину за обсуждение результатов работы и полезные замечания.

Литература

- 1. Плачек Г. Рэлеевское рассеяние и раман-эффект. Харьков: ГОНТИ Украины, 1935.
- 2. Ахманов С.А., Никитин С.Ю. Физическая оптика. М.: Изд-во Моск. ун-та, 1998.
- 3. Ахманов С.А., Коротеев Н.И. Методы нелинейной оптики в спектроскопии рассеяния света. М.: Наука, 1981.
- Ishiguro E., Arai T., Mizushima M., Kotani M. // Proc. Phys. Soc. 1952. A65. P. 178.
- Шреттер Х., Клекнер Х. // Спектроскопия комбинационного рассеяния света в газах и жидкостях / Под ред. А. Вебера. М.: Мир, 1982.
- 6. Дьяков Ю.Е., Крикунов С.А., Магницкий С.А., Никитин С.Ю., Тункин В.Г. // ЖЭТФ. 1983. **84**. С. 2013.
- 7. Bischel W.K., Dyer M.J. // JOSA. 1984. A1. P. 1252.

Поступила в редакцию 24.10.01