- Jessensky O., Muller F., Gosele U. // Appl. Phys. Lett. 1998.
 72, No. 10. P. 1173.
- De Laet J., Terryn H., Vereecken J. // Thin Solid Films. 1998.
 320. P. 241.
- 4. Saito M., Miyagi M. // JOSA A. 1989. 6, No. 12. P. 1895.
- Masuda H., Ohya M., Asoh H. et al. // Japan J. Appl. Phys. 1999. 38, No. 12A. P. L1403.
- Днепровский В.С., Жуков Е.А., Шалыгина О.А. и др. // ЖЭТФ. 2002. 94. С. 1169.
- Masuda H., Ohya M., Nishio K. et al. // Japan J. Appl. Phys. 2000. 39, No. 10B. P. L1039.
- Masuda H., Ohya M., Asoh H. et al. // Appl. Phys. Lett. 1997. 71. P. 2770.
- Masuda H., Ohya M., Asoh H., Nishio K. // Japan J. Appl. Phys. 2001. 40, No. 11B. P. L1217.

АКУСТИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА

УДК 538.214; 539.1.01

- 10. Борн М., Вольф Э. Основы оптики. М., 1970.
- Spanier J.E., Herman I.P. // Phys. Rev. 2000. B61, No. 15. P. 10437.
- Nielsch K., Choi J., Schwirn K. et al. // Nano Lett. 2002. 2, No. 7. P. 677.
- 13. *Францевич И.Н.* Анодные окисные покрытия на металлах и их защита. Киев, 1985.
- Galli M., Agio M., Andreani L.C. et al. // Phys. Rev. 2002.
 B65. P. 113111.
- 15. Ярив А., Юх П. Оптические волны в кристаллах. М., 1987.

Поступила в редакцию 07.03.03

ИССЛЕДОВАНИЕ СТРУКТУРЫ ВОДНЫХ СИСТЕМ МАГНИТООПТИЧЕСКИМ МЕТОДОМ

Н. А. Домнина, Т. Н. Лозовая, А. В. Потапов, А. М. Салецкий

(кафедра общей физики)

E-mail: potapov@lum.phys.msu.su

Исследован эффект Фарадея в воде, в водно-спиртовых и $H_2O + D_2O$ растворах. Установлена немонотонная зависимость фактора магнитооптической аномалии H_2O от температуры, связанная с неоднородной структурой воды. В растворах $H_2O + D_2O$ выполняется закон аддитивности для постоянной Верде. Перестройка структуры водно-спиртовых систем в зависимости от концентрации этанола $C_{C_2H_5OH}$ вызывает нелинейную зависимость эффекта Фарадея от $C_{C_2H_5OH}$.

Многочисленные исследования свойств воды и водных растворов показали, что вода является весьма неординарной жидкостью, трудно поддающейся не только непосредственному экспериментальному изучению, но и моделированию. Многие из ее параметров аномальны и существенно отличаются от аналогичных характеристик других жидкостей, что может быть связано с ее структурой. Экспериментальные исследования водных систем [1-4] показали, что вода по своей структуре является неоднородной. При этом структура водных систем существенным образом влияет на эффективность физических процессов, регламентирующихся расстоянием между взаимодействующими молекулами. Наиболее значительное изменение физико-химических свойств воды, ее структурных параметров и эффективности фотопроцессов наблюдается для водных растворов различных растворителей. Наличие неоднородностей в водной матрице должно оказывать влияние на фотофизические процессы, происходящие с растворенными сложными молекулами. В этой связи представляет интерес исследование структуры воды и водных растворов.

В настоящей работе представлены результаты исследования эффекта Фарадея в воде при разных температурах и в водных растворах тяжелой воды и этилового спирта. Объектами исследования были бидистиллированная вода H_2O ($\chi = 1.2 \times 10^{-6}$ Om⁻¹ · cm⁻¹) и D₂O ($\chi = 1 \cdot 10^{-6}$ Om⁻¹ × см⁻¹, содержание D₂O 99.8%). Этиловый спирт (C₂H₅OH) очищался и осушался по стандартным методикам [5]. Контроль за его чистотой осуществлялся по УФ-спектрам поглощения, которые сравнивались со стандартными спектрами [5].

Сущность эффекта Фарадея заключается в повороте плоскости поляризации при наложении на конденсированную среду магнитного поля [6]. Величина вращения определяется законом Верде $\theta = V(\lambda, T)lH$, где H — напряженность приложенного магнитного поля; l — длина пути света, распространяющегося параллельно магнитному полю; $V(\lambda, T)$ — постоянная Верде, являющаяся характеристикой исследуемого вещества и зависящая от длины волны света и от температуры T.

Эффект Фарадея наблюдается для любых прозрачных веществ. Однако постоянные Верде очень малы по численному значению (сотые доли угловых секунд). Поэтому для регистрации эффекта Фарадея использовалось импульсное магнитное поле [7]. Кроме того, использование в эксперименте импульсного метода измерения позволяет исключить изменение структуры водных систем под действием магнитного поля [8]. Для определения величин V была создана следующая импульсная установка (рис. 1). Источником света 1 служит Не-Ne лазер ЛГН-208А $(\lambda = 638.8 \text{ нм})$. Его излучение имело линейную поляризацию, линейно поляризованный свет проходит через поляриметрическую кювету длиной 130 мм и диаметром 11 мм. Кювета имела рубашку охлаждения 2, через которую циркулирует вода с температурой, создаваемой в термостате. Таким образом, осуществлялось термостатирование кюветы при разных температурах. Поверх рубашки охлаждения намотан соленоид 3. Соленоид содержит 1000 витков провода сечением 2 мм.

Рис. 1. Блок-схема установки для определения постоянной Верде водных систем

Световой поток, прошедший поляроид, преобразуется фотоэлектронным умножителем 4 ФЭУ-84 в электрический сигнал, который регистрируется импульсным вольтметром 5 В4-17 и осциллографом 6 С8-17. Импульсное поле создается при разряде батареи конденсаторов 7 (C = 1000 мкФ) через обмотку соленоида с индуктивностью L и малым активным сопротивлением R. При этом энергия, накопленная в конденсаторе за время, приблизительно равное четверти периода колебаний T в образовавшемся LCR контуре, переходит в магнитную.

Индукция магнитного поля *В* в этом случае может быть определена из следующего соотношения:

$$B = U\sqrt{\mu_0 c/Sl},\tag{1}$$

где $S = \pi D/4$, D — диаметр, l — длина соленоида, μ_0 — магнитная постоянная, равная 1.257×10^{-6} В · с/(A · м).

Разряд конденсатора осуществлялся тиристором 8 Т-150, управляемым генератором 9 Г5-63. Батарея конденсаторов от блока питания 10 заряжается до определенного напряжения, которое фиксируется вольтметром 11 В7-16А. Перед фотоумножителем находится поляроид 12, с помощью которого в отсутствие магнитного поля на выходе ФЭУ устанавливается нулевое значение (поворотом его вокруг оси). В этом случае направление колебаний электрического вектора света лазера и направление колебаний, которое пропускает поляризатор, перпендикулярны. При включении магнитного поля в веществе происходит изменение плоскости поляризации лазерного излучения. В результате на выходе ФЭУ появляется сигнал, пропорциональный углу поворота плоскости поляризации $J = k\theta$. Меняя величину магнитного поля (изменяя напряжение на батарее конденсаторов) и определяя значение интенсивности света, прошедшего через вещество Ј, можно определить постоянную Верде. Для этого строят зависимость *J*(*H*), где *H* — напряженность поля. Угол наклона этой зависимости будет равен V/k (k — коэффициент пропорциональности между J и θ).

Из формулы (3) видно, что магнитная индукция (а значит, и поле) пропорциональны напряжению на обкладках конденсатора U. Поэтому величина V/k может быть определена из зависимости J(U). Определение величины V/k осуществлялось по методу наименьших квадратов из зависимости J(U). Коэффициент k определялся сравнением с табличными значениями постоянной Верде для воды (v = 0.016 угл.мин./А) и этанола (v = 1.072 угл.мин./А).

Если система обладает сферической симметрией, то для угла поворота плоскости поляризации справедлива формула

$$\theta = \frac{e}{2mc^2} \nu \frac{dn}{d\nu} lH,\tag{2}$$

где e, m — заряд и масса электрона соответственно, c — скорость света в вакууме, n — показатель преломления, ν — частота света.

Квантовая теория эффекта Фарадея показала, что классическая формула для постоянной Верде (удельного вращения) правильно описывает явление, если ввести в эту формулу множитель $0 < \gamma^* < 1$, называемый фактором магнитооптической аномалии. Фактор магнитооптической аномалии характеризует симметрию силового поля и определяется структурой молекулы и ее окружения.

Молекула воды имеет ось симметрии лишь второго порядка (точечная группа C_{2v}), но вода обнаруживает нормальное вращение плоскости поляризации. В таких случаях, по-видимому, играет роль не симметрия ядерного остова, а симметрия функциональных групп. Таким образом, молекула состоит из двух групп ОН, каждая из которых, подобно двухатомной молекуле, имеет ось симметрии бесконечного порядка (точечная группа $C_{\infty v}$). Электронные переходы в функциональных группах могут происходить между состояниями, волновые функции которых можно рассматривать как линейную комбинацию волновых функций двух атомов.

Если под действием каких-либо внешних факторов будет меняться параметр γ^* , то это будет указывать на перераспределение электронной плотности, связанное с перестройкой структуры конденсированной среды.

Известно, что сильное влияние на структуру воды оказывает температура: с ее ростом изменяется форма ИК спектров поглощения, время корреляции и т. д. В связи с этим нами проведено исследование влияния температуры на эффект Фарадея в воде.

На рис. 2 представлены зависимости величины J, характеризующей угол поворота плоскости поляризации ($J = k\theta$), от напряжения на обкладках конденсатора U для трех температур. Из рис. 2 видно, что эти зависимости линейны, это позволяет определить постоянные Верде из их наклона.

Рис. 2. Зависимости J, характеризующие угол поворота плоскости поляризации, от величины напряжения на обкладках конденсатора для трех температур: 18 (1), 28 (2) и 44°С (3)

Для определения характера изменения структуры воды с ростом ее температуры мы рассчитали фактор магнитооптической аномалии, введенный в работе [9]:

$$\gamma^* = \frac{V_n - V}{V_n},\tag{3}$$

где V — экспериментально определенная, а V_n — вычисленная по формуле Беккереля постоянная Верде.

Величина γ^* является структурно-чувствительной и зависит от характера симметрии электронного облака молекулы H_2O . Зависимость $\gamma^*(T)$ показана на рис. З. Видно, что она представляет собой ломаную прямую, причем в начале наблюдается слабая зависимость γ^* от температуры (температурный коэффициент прямой $2.5 \cdot 10^{-4}$ град⁻¹). При температуре 35°С (точность поддержания температуры в наших экспериментах ± 1.5 °C) наблюдается точка перелома, после которой также наблюдается линейная зависимость $\gamma^*(T)$, но уже с другим коэффициентом прямой $(3.5 \cdot 10^{-4} \text{ град}^{-1})$. Полученный результат может быть качественно объяснен с точки зрения кластерной модели воды. Действительно, на начальном участке температуры (до 35°С) происходит ослабление водородных связей между молекулами Н₂О в кластере, что вызывает уменьшение

Рис. 3. Зависимость фактора магнитооптической аномалии Н₂О от температуры

симметрии электронных облаков молекулы, в результате наблюдается уменьшение величины γ^* . В точке перегиба ($T \approx 35 \pm 1.5$ °C) происходит разрушение кластера на димеры, тримеры и т. д. молекул H₂O. При дальнейшем росте температуры доля свободных молекул H₂O монотонно растет. Поскольку симметрия молекул воды, связанных в различные ассоциаты, ниже, чем мономерных молекул, наблюдается падение γ^* с ростом температуры T.

Для водных растворов неэлектролитов, в частности спиртов, характерно резкое изменение физико-химических свойств области их малой концентрации [10]. Такое изменение связывалось с влиянием растворенных молекул на структуру воды. В связи с этим был исследован эффект Фарадея в таких растворах.

Для раствора обычно имеем закон аддитивности Верде

$$\theta = \theta_{\rm solv} + \theta_{\rm dis.\,mat},\tag{4}$$

где для концентрации C растворенного вещества имеем

$$\theta_{\rm dis.\,mat} = V_{\rm dis.\,mat} \, C \, l \, B, \tag{5}$$

где *В* — модуль индукции магнитного поля, *l* — длина соленоида.

Отклонения от аддитивности могут быть интерпретированы как проявления специфических межмолекулярных взаимодействий.

Согласно формуле (4), для раствора этанола в воде должен выполняться закон аддитивности для постоянной Верде; иными словами, с ростом концентрации С2 Н5 ОН ожидается линейная зависимость $\theta(C)$ (θ должно увеличиваться, так как постоянная Верде для спирта выше, чем для воды). Как показали наши эксперименты, между θ и $C_{C_2H_5OH}$ отсутствует линейная зависимость. Такое отклонение от аддитивности может быть интерпретировано как проявление специфических межмолекулярных взаимодействий. Для характеристики этих взаимодействий введем параметр $A_{ heta}= heta_{
m exp}/ heta_{
m theor}$, где $heta_{
m exp}$ — измеряемое значение угла поворота плоскости поляризации при поле H (в нашем случае H=2 imes $imes 10^4\,$ A/м), а $heta_{
m theor}$ — рассчитанное с помощью формулы закона аддитивности Верде значение для угла поворота плоскости поляризации. На рис. 4 прослеживается немонотонный характер зависимости $A_{\theta}(C_{C_{2}H_{5}OH})$: при малых концентрациях спирта

Рис. 4. Зависимость значений параметра A_{θ} от концентрации неэлектролита (в объемных долях): $C_2 H_5 OH$ (2) и $D_2 O$ (2)

наблюдается резкое падение значения A_{θ} . В области концентраций $C_2 H_5 OH \ 20-80\%$ A_{θ} практически не меняется, и при концентрации спирта > 80% наблюдается рост A_{θ} . Такое поведение $A_{\theta}(C_{C_2H_5OH})$ указывает на перестройку структуры водной системы.

Известно [11], что электронная конфигурация молекулы D_2O мало отличается от электронной конфигурации H_2O . Изменение массы непосредственно влияет на силовое поле и расстояние OH и OD, углы HOH и DOD практически одинаковы. Поэтому растворение D_2O в H_2O не должно изменять симметрию электронных облаков молекул H_2O . В связи с этим должен соблюдаться закон аддитивности Верде. Действительно, экспериментально наблюдается линейная зависимость параметра A_{θ} от концентрации D_2O в воде (рис. 4, кривая 2).

Таким образом, влияние температуры на эффект Фарадея и отклонение от закона аддитивности для постоянной Верде для водных систем могут быть качественно объяснены с помощью кластерной модели воды. Существование локальных областей повышенной плотности распределения молекул в водной матрице обусловлено образованием водородных связей между молекулами H₂O. При увеличении температуры и добавлении в раствор неэлектролитов с отличной от H₂O электронной конфигурацией молекул происходит постепенное ослабление водородных связей и как следствие разрушение кластеров.

Литература

- 1. Березин М.В., Зацепина Г.Н., Киселев В.Ф., Салецкий А.М. // Журн. физ. химии. 1991. **В65**, № 5. С. 1338.
- Marjan M., Kurik M., Kikineshy A. et al. // Modeling. Simul. Mater. Sci. Eng. 1999. 7. P. 321.
- Бункин Н.Ф., Лобеев А.В. // Письма в ЖЭТФ. 1993. В58, № 2. С. 91.
- 4. Лозовая Т.В., Потапов А.В., Салецкий А.М. // Журн. хим. физики. 2002. **21**, № 6. С. 3.
- 5. Гордон А., Форд Ф. Спутник химика. М., 1976.
- Вилков Л.В., Пентин Ю.А. Физические методы исследования в химии. Резонансные и электрооптические методы. М., 1983.
- Muto S., Ichikawa S., Nagata T. et al. // J. Appl. Phys. 1989.
 66, No. 8. P. 3912.
- 8. Классен В.И. Омагничивание водных систем. М., 1982.
- 9. Верхозин А.Н. Магнитооптические свойства воды. Деп. ВИНИТИ. 1981. № 2374-81.
- Левшин Л.В., Салецкий А.М., Южаков В.И. // Вестн. Моск. ун-та. Физ. Астрон. 1985. № 4. С. 73 (Moscow University Phys. Bull. 1985. No. 4. P. 85).
- Зацепина Г.Н. Физические свойства и структура воды. М., 1987.

Поступила в редакцию 20.12.02