люэна на сферу. Результаты этих расчетов, проведенных с использованием модельных потенциалов, даны на рис. 2, а, б. Из рисунка видно, что как для меди так и для железа практически нет различий в значениях интенсивности на интервале углов до первого структурного рефлекса. На остальных интервалах уже заметны существенные отличия. Для меди (рис. 2, a) в интервале углов $60-90^{\circ}$ при суммировании по сфере видно некоторое смещение в сторону больших углов, а в интервале 90-110° значения интенсивности оказались существенно заниженными. Для железа (рис. 2, б) начиная с углов около 60° суммирование по сфере дает большие значения примерно на 20 эл. ед. Заметной оказалась разница и вблизи рефлексов. Подобные расчеты, проводившиеся по модели Борна-Бегби, показали, что замена зоны Бриллюэна сферой приводит к аналогичным искажениям результатов расчетов интенсивности ТДР.

Литература

1. Иверонова В.И., Кацнельсон А.А. Ближний порядок в твердых растворах. М., 1977.

ГЕОФИЗИКА

УДК 551.51:551.596

- 2. Кривоглаз М.А. Теория рассеяния рентгеновских лучей и тепловых нейтронов реальными кристаллами. М., 1967.
- 3. Warren B.E. X-ray diffraction. N.Y., 1969.
- 4. Borie B. // Acta. Cryst. 1961. 14. P. 566.
- 5. Fontain D. de // Acta metallurgica. 1970. 18. P. 275.
- 6. Захарова М.И., Фуэнтес Х.Э. // ДАН СССР. 1975. **225**, № 2. С. 296.
- 7. Begbie G.H., Born M. // Proc. Roy. Soc. 1947. A188. P. 179.
- 8. *Харрисон У.* Псевдопотенциалы в теории металлов. М., 1968.
- 9. Animalu A.O.E. // Phys. Rev. 1973. B8. P. 3542.
- 10. Animalu A.O.E. // Ibid. P. 3555.
- 11. Силонов В.М. Физика сплавов. М., 1993.
- 12. Born M., Karman T. // Phys. Z. 1912. 13. P. 297.
- 13. Борн М., Кунь Х. Динамическая теория кристаллических решеток. М., 1958.
- 14. Born M. // Proc. Phys. Soc. 1942. 51. P. 362.
- 15. Born M. // Ibid. 180. P. 397.
- Францевич И.Н., Воронов Ф.Ф., Бакута С.А. Упругие постоянные и модули упругости металлов и неметаллов. Киев, 1982.

Поступила в редакцию 07.02.03

ИЗМЕРЕНИЕ ПОЛЯ ВЕТРА НАД ГОРОДОМ С ПОМОЩЬЮ АКУСТИЧЕСКОГО ЗОНДИРОВАНИЯ

В. П. Юшков, М. А. Каллистратова^{*)}, Е. В. Караваева, Р. Д. Кузнецов^{*)}, Г. А. Курбатов, В. Г. Перепелкин^{*)}, О. А. Тарасова, Е. А. Шурыгин^{*)}

(кафедра физики атмосферы)

E-mail: atmos@phys.msu.su

Акустическое зондирование обеспечивает дистанционные измерения вертикальных профилей вектора скорости ветра в городских условиях до высоты нескольких сотен метров, где контактные измерения трудно осуществимы. В работе описаны физические принципы доплеровской акустической локации. Приведены характеристики звуковых локаторов (содаров), используемых в исследованиях поля ветра над Москвой, которые проводятся совместно на физическом факультете МГУ и в Институте физики атмосферы им. А. М. Обухова РАН. Изложены предварительные результаты содарных измерений скорости ветра в центре Москвы.

Введение

В исследованиях городского микроклимата главное внимание уделяется «острову тепла», характеристикам турбулентности и высоты слоя перемешивания, а также измерениям концентраций загрязнений. Меньше работ посвящено полю ветра, хотя именно ветровые потоки сильно влияют на накопление и распределение загрязняющих примесей от внутригородских источников. Обычно скорость ветра внутри города измеряется в приземном слое [1]. Лишь в немногих городах, где имеются метеорологические башни, проводились измерения вертикальных профилей скорости ветра.

Экономичным и эффективным методом исследования вертикальной структуры поля ветра является доплеровская акустическая локация, которая обеспечивает хорошее пространственное разрешение, а также возможность проведения длительных непрерывных измерений [2]. Примеры применения акустических локаторов (содаров) в городах можно найти в работах [3–5]. В странах СНГ кратковремен-

^{*)} Институт физики атмосферы им. А. М. Обухова РАН.

ные содарные исследования поля ветра над городом проводились в Кемерово, Алма-Ате, Москве [6-8].

В пределах городской застройки наблюдается конвергенция ветрового потока, нарушение логарифмичности профиля скорости, увеличение высоты нижнего струйного течения. Степень проявления таких особенностей зависит от климатической зоны, орографии местности, сезона и синоптической ситуации, а также от характеристик самого города (его площади, плотности и этажности застройки, и т. п.); поэтому индивидуальные характеристики поля ветра в разных городах сильно отличаются.

С точки зрения локальной ветровой циркуляции Москва является одним из наименее изученных городов среди других крупных городов мира. Поэтому в 2002 г. на кафедре физики атмосферы физического факультета МГУ и в Институте физики атмосферы им. А. М. Обухова (ИФА РАН) была разработана программа совместных исследований, которая предусматривает регулярные акустические измерения вертикальных профилей скорости ветра в районе расположения МГУ и в центре Москвы. Для этих целей на физическом факультете МГУ установлен доплеровский содар и проведены его модернизация и предварительные испытания.

1. Физические основы акустического зондирования атмосферы

Механизм рассеяния звука атмосферной турбулентностью

Акустическая локация атмосферы основана на объемном рассеянии волн слышимого диапазона турбулентными неоднородностями метеорологических параметров. Фазовая скорость звука c определяется абсолютной температурой воздуха T и проекцией скорости ветра \mathbf{v} на нормаль к фронту звуковой волны $\mathbf{k}/|\mathbf{k}|$:

$$c = (\gamma RT/\mu)^{1/2} + \mathbf{vk}/|\mathbf{k}|, \qquad (1)$$

где \mathbf{k} — волновой вектор, R — газовая постоянная, γ — отношение теплоемкостей воздуха при постоянном давлении и объеме, μ — молярная масса воздуха.

Атмосферная турбулентность вызывает флуктуации T и \mathbf{v} , что приводит к появлению случайных неоднородностей показателя преломления $n' = c_0/c - 1$ (где c_0 — средняя скорость звука). Характерные частоты турбулентных флуктуаций в атмосфере значительно ниже частоты слышимого звука. Поэтому звук рассеивается на как бы замороженных неоднородностях, увлекаемых ветровым потоком. Неоднородности показателя преломления в атмосфере весьма малы ($n' < 10^{-2}$), и интенсивность рассеяния на хаотических неоднородностях мала. Вследствие конструктивной интерференции рассеяние усиливается в определенных направлениях, если неоднородности

являются периодическими, и выполняется условие Брэгга:

$$l_t = \lambda / (2\sin\Theta_B). \tag{2}$$

Здесь l_t — характерный масштаб неоднородностей, λ — длина звуковой волны, Θ_B — угол Брэгга (угол падения, равный половине угла рассеяния θ). Поскольку энергетический спектр турбулентных неоднородностей в атмосфере непрерывен, то всегда найдется спектральная компонента турбулентности $K = 2\pi/l_t$ удовлетворяющая условию (2), которая и будет определять интенсивность рассеяния волны с длиной λ на угол θ .

Интенсивность рассеяния

Количественной характеристикой интенсивности рассеяния является эффективное сечение $\sigma(\theta)$, имеющее размерность м⁻¹ и равное той доле мощности излучения, которая рассеивается из единичного объема в единичный телесный угол в направлении θ . Монин [9] и Татарский [10] выразили $\sigma(\theta)$ через линейную комбинацию спектральных плотностей флуктуаций температуры $\Phi_T(K)$ и скорости ветра $\Phi_v(K)$:

$$\sigma(\theta) = 2\pi k^4 \cos^2 \theta \left[\frac{\Phi_T(K)}{4T_0^2} + \frac{\Phi_v(K)}{c_0^2} \cos^2 \frac{\theta}{2} \right].$$
 (3)

Здесь c_0 и T_0 — средние значения скорости звука и абсолютной температуры воздуха, $k = 2\pi/\lambda$ волновое число. Аргумент спектральных плотностей K (модуль вектора рассеяния) представляет собой модуль разности волновых векторов падающей и рассеянной волн:

$$K = |k - k_s| \equiv 2k\sin(\theta/2). \tag{4}$$

Для слышимого звука и широкого диапазона углов рассеяния характерный масштаб рассеивающих неоднородностей $l_t = 2\pi/K$ лежит в так называемом инерционном интервале $L_0 > l_t > l_0$, где турбулентность можно считать изотропной. Для звуковой частоты 2 кГц обратное (т. е. под углом 180°) рассеяние происходит на неоднородностях с характерными размерами ≈ 8.5 см. Поэтому для расчета $\sigma(\theta)$ по формулам (3) и (4) можно использовать колмогоровский спектр локально-изотропной турбулентности.

Спектральные плотности $\Phi_T(K)$ и $\Phi_v(K)$ в инерционном интервале выражаются через структурные параметры температуры C_T^2 и скорости ветра C_v^2 [10]:

$$\Phi_T(K) = 0.033 C_T^2 K^{-11/3},$$

$$\Phi_v(K) = 0.061 C_v^2 K^{-11/3},$$
(5)

которые определяются «законом 2/3» Колмогорова-Обухова:

$$C_T^2 = \left\langle [T(r_1) - T(r_2)]^2 \right\rangle / (r_1 - r_2)^{2/3},$$

$$C_v^2 = \left\langle [v(r_1) - v(r_2)]^2 \right\rangle / (r_1 - r_2)^{2/3}$$
(6)

и могут быть найдены по измерениям флуктуаций температуры и скорости ветра.

Подстановка выражений (4) и (5) в (3) дает формулу для сечения рассеяния, которая допускает экспериментальную проверку:

$$\sigma(\theta) = 0.03 k^{1/3} \left(\sin \frac{\theta}{2} \right)^{-11/3} \times \\ \times \cos^2 \theta \left[0.54 \frac{C_T^2}{4T_0^2} + \frac{C_v^2}{c_0^2} \cos^2 \frac{\theta}{2} \right].$$
(7)

Такая проверка, выполненная в 1960-е гг. в приземном слое атмосферы [11], дала хорошее количественное согласие с расчетами по формуле (7). Из угловой зависимости (7) следует, что основная часть мощности рассеивается в переднюю полусферу, рассеяния на угол $\theta = 90^{\circ}$ не происходит, а рассеяние на угол $\theta = 180^{\circ}$ происходит только на температурных неоднородностях.

Частота рассеянного сигнала

Движение рассеивающих неоднородностей, увлекаемых ветровым потоком со скоростью **v**, приводит к доплеровскому сдвигу частоты рассеянного сигнала f_s относительно частоты падающей волны f [12]:

$$f_D \equiv (f_s - f) = \frac{1}{2\pi} (\mathbf{k}_s - \mathbf{k}) \mathbf{v}.$$
 (8)

Измерение частоты рассеянного сигнала дает возможность определения проекции скорости ветра на направление вектора рассеяния $\mathbf{K} \equiv (\mathbf{k}_s - \mathbf{k})$.

2. Акустические локаторы (содары)

В моностатической схеме содара излучение и прием звука осуществляется одной и той же звуковой антенной, т.е. используется «обратное» рассеяние (на угол $\theta = 180^{\circ}$). Для обратного рассеяния формулы (7) и (8) приобретают простой вид:

$$\sigma(180^{\circ}) = 0.004k^{1/3}C_T^2/T_0^2, \quad v_r = f_D \frac{c_0}{2f}, \quad (9)$$

где v_r — проекция скорости ветра на направление луча локатора. В трехкомпонентном моностатическом содаре излучение и прием звука производятся в вертикальном и в двух наклонных направлениях (развернутых под углом 90° по азимуту), что позволяет измерить полный вектор скорости ветра. Непрерывный прием эхо-сигнала после посылки звукового импульса дает вертикальные профили C_T^2 и скорости ветра.

Используемые в совместных исследованиях содары Echo-1D (разработанный в Германии) и Латан-1 (разработанный в ИФА РАН) имеют близкие системные параметры, которые приведены в таблице. В процессе подготовки к регулярным измерениям содар Echo-1D был модернизирован с целью повышения его помехозащищенности от высокого уровня городского акустического шума.

На рис. 1 приведен пример регистрации вертикальных профилей интенсивности эхо-сигнала и трех лучевых компонент скорости ветра на дисплее содара Echo-1D. В нижней части рисунка показаны профили модуля горизонтальной скорости ветра $v_{\rm hor}$ и его направления φ , рассчитанные по формулам:

$$v_{
m hor} = (1/\sinlpha)(V^2 + U^2)^{1/2}, \quad {
m tg}\, \varphi = V/U,$$

где V и U — лучевые компоненты скорости ветра в ортогональных азимутальных направлениях, α зенитный угол наклонных лучей содара.

Сравнения содарных измерений скорости ветра с данными измерений на метеорологических мачтах и низкоуровневых радиозондах были выполнены ранее для содара Латан-1 в Цимлянске и Чехословакии [13], а для содара Есho-1D — в Германии [14].

Параметры содаров Echo-1D (МГУ) и Латан-1 (ИФА РАН)

	Латан-1	Echo-1D
Тип содара	Моностатический доплеровский	Моностатический доплеровский
Тип акустических антенн	Рупорный динамик в фокусе параболоида	Рупорный динамик в фокусе параболоида
Количество акустических антенн	3	3
Зенитный угол оси наклонных антенн, $lpha$	30°	27°
Несущая частота	2000 Гц	1700 Гц
Длина звуковой волны	0.17 м	0.2 м
Электрическая мощность (в импульсе)	100 Br	100 BT
Мощность звукового излучения в главном лепестке диаграммы направленности	6 Вт	3 Вт
Минимальная высота зондирования	30 м	50 м
Максимальная высота зондирования	560 м; 850 м	200 м; 400 м; 800 м
Разрешение по высоте	8.5 м; 17 м	25 м; 50 м
Время измерения одного профиля	10 c	20 с
Время осреднения измерений	0.2-60 мин	0.3-60 мин

Рис. 1. Регистрация «мгновенных» (т.е. построенных по одному звуковому «выстрелу» в направлении каждого из трех содарных лучей) вертикальных профилей интенсивности эхо-сигнала и скорости ветра на дисплее содара Echo-1D. 02.08.02, 20:00, Москва. Верхний ряд: профили интенсивности (в произвольных единицах) эхо-сигналов, принятых с вертикального направления (S₁) и с наклонных направлений (S₂ и S₃). Средний ряд: лучевые компоненты скорости ветра (м/с): W — вертикальная компонента, V и U — компоненты вдоль осей антенн, наклоненных к югу и к востоку. Нижний ряд: среднеквадратичное отклонение вертикальной компоненты скорости D(W) (м/с) (здесь D(W) равно нулю, поскольку взят лишь один «мгновенный» профиль), модуль горизонтальной скорости ветра Mod (м/с) и направление ветра Dir (градусы)

Рис. 2. Пример сопоставления профилей скорости ветра, измеренных радиозондом (сплошная линия) и содаром Echo-1D (пунктирная линия), сентябрь 1993 г. (Vogt et al., 1994). Время выпуска радиозонда — 09:30 местного времени, содарные данные осреднены за 5 мин, с 09:35 до 09:40

Полученные коэффициенты корреляции R (при времени осреднения $10 \div 30$ мин) лежат в пределах $R = 0.93 \div 0.97$ для скорости ветра и R = 0.95 - 0.98 для направления. Среднеквадратичные отклонения содарных данных от данных метеорологических измерений не превышают 1 м/с и 8° соответственно. Такая точность измерений отвечает требованиям метеорологических стандартов. На рис. 2 приведен пример сопоставления профилей ветра, измеренных содаром Echo-1D и радиозондом.

3. Содарные данные о вертикальной структуре поля ветра над центром Москвы

Несколько серий измерений профилей скорости ветра содарами Латан-1 и Echo-1D было проведено в 1991, 1993 и 1999 гг. в пункте зондирования ИФА РАН, расположенном в южном секторе Центрального административного округа Москвы.

Пример гистограмм повторяемости скорости и направления ветра в Москве в феврале 1991 г. приведен на рис. З. По данным непрерывных измерений в течение одного месяца распределение скорости ветра на средней высоте 78 м (при пространственном осреднении по слою от 66 до 90 м) имеет узкий максимум. Роза ветров на этой высоте сильно вытянута в одном направлении, несмотря на достаточно равномерное распределение направлений ветра в вышележащих слоях. Возможно, такой постоянный ветровой поток образовался из-за уличных каньонов вблизи пункта

Рис. 3. Частота повторяемости скорости (а) и направления (б) ветра на высотах 78, 108 и 196 м в центре Москвы. Измерения проводились содаром Латан-1 непрерывно в течение одного месяца, с 30.01.91 по 28.02.91

зондирования, где четыре узкие близко расположенные параллельные улицы (с высотой зданий 15-30 м) вытянуты в направлении север-юг. Другие возможные причины могут заключаться в локальной циркуляция ветра вокруг одного из близлежащих к пункту зондирования зданий (имеющего высоту около 60 м), либо в проявлении конвергентного течения, направленного к более теплому центру города.

Заключение

Исследования вертикальной структуры поля ветра является важной частью изучения общих и индивидуальных характеристик микроклимата крупных городов.

Полученные ранее в ИФА РАН данные выявили некоторые характерные особенности скорости ветра над Москвой. Однако подобные отдельные серии измерений в одном пункте не дают достаточной базы для надежных выводов. Проведенная подготовка и испытания аппаратуры для регулярных содарных измерений профилей ветра в двух пунктах на территории Москвы обеспечит получение более убедительных статистических данных, которые предполагается использовать для оценки потенциала загрязнения города и моделирования распределения и переноса примесей в его воздушном бассейне.

Работа выполнена при финансовой поддержке РФФИ (гранты 02-05-64916 и 01-05-65112). Авторы выражают благодарность всем службам физического факультета МГУ и лично В. И. Кузнецову за помощь по установке содара на крыше здания факультета.

Литература

- 1. Ландсберг Г.Е. Климат города. Л., 1983.
- Coulter R.L., Kallistratova M.A. // Meteorol. Atmos. Phys. 1999. 71. P. 3.
- Evers K., Neisser J., Weiss E. // Z. Meteorology. 1987. 37. P. 241.
- Neff W.D., King S.W. The use of sodars in an urban air quality study // Acoustic Remote Sensing / Ed. S.P. Singal. New Delhy. 1990. P. 506.
- Mastrantonio G., Viola A.P., Argentini S. et al. // Boundary-Layer Meteor. 1994. 71. P. 67.
- 6. Балин Ю.С., Вильде Т.В., Зуев В.Е., Красненко Н.П. // Оптика атмосферы и океана. 1990. № 3. С. 729.
- Белявская В.Д., Пекур М.С., Петенко И.В., Шурыгин Е.А. Исследование АПС над Алма-Атой методом акустического зондирования // Исследование загрязнения атмосферы Алма-Аты: эксперимент АНЗАГ-87. Алма-Ата, 1990.
- Pekour M.S., Kallistratova M.A. // Appl. Phys. 1993. B57. P. 49.
- 9. Монин А.С. // Акуст. журн. 1961. 7, № 4. С. 457.
- 10. Татарский В.И. Распространение волн в турбулентной атмосфере. М., 1967.
- Kallistratova M.A. // Int. J. Remote Sensing. 1994. 15. P. 251.
- 12. *Блохинцев Д.И.* Акустика неоднородной движущейся среды. М., 1981.
- Каллистратова М.А., Петенко И.В., Шурыгин Е.А. // Изв. АН СССР, ФАО. 1987. 23. С. 451.
- Vogt S., Beyrich F., Kalthoff N., Weisensee U. // Proc. of 7th Int. Symp. on Acoustic Remote Sensing, Boulder, USA. 3.145-3.150. 1994.

Поступила в редакцию 18.12.02