ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 536.227

ПОЯВЛЕНИЕ В МОНОКРИСТАЛЛАХ ТРИГЛИЦИНОВ ОБЛАСТЕЙ С ДИЭЛЕКТРИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ, ОТЛИЧНЫМИ ОТ ОСНОВНОЙ СРЕДЫ. НОВЫЕ ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ ФРАКТАЛЬНОГО ПОДХОДА

А. М. Лотонов, Н. Д. Гаврилова, В. К. Новик

(кафедра физики полимеров и кристаллов) E-mail: lotonov@polly.phys.msu.ru

В работе изучались частотные и температурные зависимости действительной и мнимой компонент диэлектрической проницаемости ε' , ε'' монокристаллов триглицинсульфата и триглицинселената в диапазоне частот 0.1 Гц \div 20 кГц и температур 5–55°С. Ниже точки Кюри зависимость $\lg \varepsilon''(\lg \omega)$ аппроксимируется двумя линейными участками с разными наклонами, которые соответствуют двум различным механизмам транспорта носителей заряда. Обнаружено возникновение размытого максимума вблизи температуры фазового перехода (T_c) на зависимостях $\lg \varepsilon'(\lg \omega)$. Это явление было объяснено эффектом Максвелла-Вагнера, реализуемым при возникновении микрообластей с ε' , отличной от основной матрицы.

В последнее десятилетие фрактальная концепция получила новое развитие в физике конденсированного состояния. Широкое применение фрактальные методы нашли в описании явлений дислокационных реакций, трансляционных перколяций в полупроводниках, а также в диэлектрической спектроскопии кристаллов. Фрактальный подход позволяет распознавать механизмы релаксаций различных фрагментов структуры, а также транспорта носителей заряда по локализованным состояниям и указать на частицы, осуществляющие этот транспорт. Этот же подход оказывается эффективным в исследовании материалов, содержащих сильные и слабые водородные связи и водородно-кислородные группировки, т.е. структурные элементы, характерные для сегнетоэлектриков.

В предлагаемой статье мы используем фрактальный подход для изучения процессов, происходящих в сегнетоэлектрических кристаллах в окрестности температуры фазового перехода. Этот подход основан на том, что сегнетоэлектрик рассматривается как колебательный континуум, отражающий кооперативное движение осцилляторов различного уровня организации (атомов, групп атомов, нанообразований — макродиполей, доменов и т. д.).

Для сегнетоэлектрических сред характерны фрактально-степенные зависимости действительной ε' и мнимой ε'' частей диэлектрической проницаемости и проводимости σ от круговой частоты ω и выполнение универсального фрактально-степенного закона [1–3]:

$$\varepsilon' \sim \omega^{-n},$$
 (1)

$$\varepsilon'' \sim \omega^k$$
 (2)

$$\sigma \sim \omega^m \tag{3}$$

где n и k — константы, величины которых позволяют судить о характере транспорта носителей заряда в системе. Согласно модели универсального диэлектрического отклика величина k изменяется от 0 до 1, причем k = 1 соответствует свободному дрейфу носителей без столкновений, k = 1/2 — диффузии ионов. Особый случай k > 1 отражает взаимодействие носителей в процессе транспорта. Релаксационные процессы хорошо описываются этим законом, и его справедливость подтверждена для многих классов твердых веществ.

Рядом авторов [4, 5] было показано, что можно на фоне релаксационных процессов выявлять резонансные эффекты для систем типа «матрица, с вкраплениями одинакового размера». В случае сегнетоэлектриков появляется возможность наблюдать за процессом образования зародышей таких вкраплений, анализируя размытые максимумы на линейных зависимостях $\lg \varepsilon'(\lg \omega)$. Эти эксперименты были проведены вдали от точки Кюри T_c на кристаллах триглицинсульфата (ТГС), чистых, с примесями и с радиационными дефектами, созданными γ -облучением, триглицинселената (ТГСел) [6], а также на образцах дейтерированного аналога ТГС [4, 7].

Экспериментальные результаты и их обсуждение

Диэлектрическая спектроскопия используется для изучения молекулярной динамики различных материалов. Этим методом можно получить информацию о реориентационном движении молекул и изменении их скоростей под влиянием внешних воздействий (температура, давление и др.). Одним из способов анализа кинетики элементов структуры сегнетоэлектриков вблизи T_c является метод диэлектрической дисперсии.

Измерения диэлектрической проницаемости и тангенса угла диэлектрических потерь проводились мостом P551 в режиме стабилизации температуры (точность 0.01 °C в течение 20 мин). В качестве объектов исследования были взяты модельные сегнетоэлектрики. В эксперименте использовались технически чистые монокристаллы TГСел и TГС, выращенные в сегнетофазе методом снижения температуры. Исследованные образцы представляли собой пластины монокристаллов размером $5 \times 5 \times 1$ мм³, большая грань которых перпендикулярна полярной оси. На большую грань наносились электроды из сусального серебра. Образцы были полидоменными, т.е. не поляризовались.

Зависимости $\lg \varepsilon''(\lg \omega)$ для кристалла ТГСел ($T_c = 22.6$ °C) в области частот 20 Гц ÷ 20 кГц и температур 5–20 °C, показанные на рис. 1, полностью соответствуют фрактальной теории в ее приложении к сегнетоэлектрикам [4].

Рис. 1. Зависимости логарифма мнимой части диэлектрической проницаемости от логарифма круговой частоты $\lg \varepsilon''(\lg \omega)$ для кристалла ТГСел при различных температурах: (a) 5 и 15.2 °С, (б) 19.1 и 20 °С

Много ниже точки фазового перехода (рис. 1, a) кривая $\lg \varepsilon''(\lg \omega)$ аппроксимируется двумя линейными участками с различными наклонами, которые отражают два различных механизма транспорта носителей заряда. Однако по мере приближения к фазовому переходу (рис. 1, δ) точка излома линейных частей смещается в область более высоких частот (свыше 20 кГц) и зависимость $\lg \varepsilon''(\lg \omega)$ трансформируется в прямую линию.

В области низких частот (ниже 1 Гц) зависимость $\lg \varepsilon''(\lg \omega)$ также сохраняет предсказанную теорией линейность (рис. 2). Зависимость аппроксимируется одним линейным участком, что соответствует одному механизму перемещения носителей зарядов в этом диапазоне частот — дрейфу. Такую зависимость удается получить только в парафазе (T = 25 °C) из-за высокой пироактивности кристалла.

Рис. 2. Зависимость логарифма мнимой части диэлектрической проницаемости от логарифма круговой частоты $\lg \varepsilon''(\lg \omega)$ для кристалла ТГСел на инфранизких частотах. Два различных измерения при постоянной температуре $25\,^{\circ}\mathrm{C}$

Зависимости $\lg \varepsilon'(\lg \omega)$ демонстрируют устойчивую особенность. Она проявляется как некоторый размытый максимум, наложенный на обычную линейную зависимость $\lg \varepsilon'(\lg \omega)$. Максимум отсутствует при температуре много ниже T_c и формируется по мере приближения к фазовому переходу со сдвигом $\lg \omega_{\max}$ в низкочастотную область (рис. 3, *a*, *б*) и постепенным размытием (рис. 3, *в*).

Подобные же проявления вблизи фазового перехода характерны и для технически чистого монокристалла ТГС (рис. 4). В монодоменных образцах $AT\Gamma C + Cr^{3+}$, содержащих примеси аланина (0.1 вес.%) и хрома (0.05 вес.%), а также в монодоменных γ -облученных образцах, размытые максимумы на кривых $\lg \varepsilon'(\lg \omega)$ в диапазоне частот $10^{-2} - 10^5$ Гц нами не наблюдались. В обоих кристаллах приближение к фазовому переходу сдвигает локальный максимум к пониженным частотам. В парафазе оба кристалла не проявляют этой особенности во всем изученном частотном диапазоне. Отмеченная особенность объективно свидетельствует о включении некоего механизма, эффективно увеличивающего действительную часть диэлектрической проницаемости $\varepsilon'(\omega)$ в рассматриваемом диапазоне частот и температур. Механизм проявляется

Рис. 3. Зависимости логарифма действительной части диэлектрической проницаемости от логарифма круговой частоты $\lg \varepsilon'(\lg \omega)$ для кристалла ТГСел при различных температурах (a) 19.1, (б) 19.8 и (в) 21.3 °С

в типичных монокристаллах и не присутствует в образцах с дефектами.

Подобный эффект возрастания действительной части диэлектрической проницаемости $\varepsilon'(\omega)$ наблюдался и был объяснен в коллоидных растворах и биологических мембранах присутствием в среде вкраплений с отличной от основной среды диэлектрической проницаемостью [5]. Эффект описан теорией Максвелла-Вагнера, исходящей из локализации на границе раздела среды и вкрапления свободных зарядов, формирующих высокополяризуемый диполь. Теория позволяет оценить размеры вкраплений [7] по частоте максимума ω_{\max} , которая определяется временем диффузии носителей через вкрапление. Для кристаллов ТГСел и ТГС известен коэффициент диффузии носителей заряда $D = 2.5 \cdot 10^{-6} \text{ м}^2/\text{c} [8].$ Тогда характеристический размер d вкрапления рассчитывается как $d = (D/\omega_{\rm max})^{1/2}$. Результаты расчетов для кристаллов ТГС и ТГСел представлены на рис. 5. Как видно из рис. 5, величина $d \approx 10^{-5}$ м

Рис. 4 Зависимости логарифма действительной части диэлектрической проницаемости от логарифма круговой частоты $\lg \varepsilon'(\lg \omega)$ для кристалла ТГС при различных температурах: (a) 42.4, (б) 46.2, (в) 47.3 и (г) 48 °С

Рис. 5. Зависимости характеристических размеров *d* микрообластей кристаллов ТГС (*a*) и ТГСел (б) от температуры

и несколько увеличивается по приближении к температуре перехода T_c .

Применение этой модели к результатам наших экспериментов требует ответа на вопрос о природе таких гипотетических вкраплений в реальных (с точечными дефектами) сегнетоэлектриках. По нашему мнению, на роль таких вкраплений могут претендовать микрообласти избыточных механических напряжений, локализованные на ростовых и примесных дефектах, в том числе и образовавшиеся при обработке поверхности для нанесения электродов. Механические напряжения, как известно, существенно снижают значение диэлектрической проницаемости, что наиболее ярко проявляется в монокристаллах АТГС + Cr^{3+} и обеспечивает их высокие преобразовательные характеристики в пироэлектрических приборах.

Отличие в абсолютных значениях диэлектрической проницаемости матрицы и микрообласти $\Delta \varepsilon$ должно возрастать по мере приближения к фазовому переходу в связи с ростом величины диэлектрической проницаемости. В то же время растущая механическая лабильность матрицы должна способствовать увеличению эффективных размеров микрообласти и, таким образом, времени диффузии носителей. Вследствие этих явлений ω_{max} смещается к низким частотам при подходе к фазовому переходу.

В монокристаллах с направленно введенными дефектами (легирование, γ -облучение) матрица механически напряжена, значение диэлектрической проницаемости резко снижено, и возможные проявления отличий $\Delta \varepsilon$ диэлектрической проницаемости матрицы и микрообластей, выделяющихся по механическому состоянию, практически минимизированы. Параэлектрическая фаза также должна минимизировать эти проявления, но по другим причинам. Переход матрицы из полярной пространственной группы P2₁ в неполярную пространственную группу $P2_1/m$, т.е. снижение анизотропии, и увеличение параметров кристаллической ячейки [9] должны относительно снизить механические напряжения в зоне влияния точечных дефектов. Соответственно значение $\Delta \varepsilon$ также должно существенно уменьшиться.

Результаты [10] масс-спектроскопических исследований ТГС, ориентированных на изучение устойчивости в нем водородных связей, указывают на наиболее вероятные элементы структуры, участвующие в дрейфе носителей и формировании высокополяризуемых диполей на границе матрицы и микрообласти. Это протоны и такие фрагменты нарушенных водородных связей, как H⁺, H₂O, OH⁻, CO, CO₂, образующиеся при распаде групп CH₂COO⁻ и СООН. Разрушение тетраэдрических подрешеток отвечает за выделение NO и HF. Таким образом, можно предположить, что механизм проводимости, скорее всего, обусловлен дефектами по водороду.

Заключение

Экспериментально обнаруженное возникновение размытого максимума на линейных зависимостях $\lg \varepsilon'(\lg \omega)$ монокристаллов ТГС и ТГСел объяснено эффектом Максвелла-Вагнера, реализуемым при возникновении микрообластей с отличной от матрицы диэлектрической проницаемостью. Сами области трактуются как формирующиеся механическими напряжениями в местах точечных дефектов. Оценка размеров этих микрообластей дает их характеристическое значение $d \approx 10^{-5}$ м. Отмеченный эффект сравнительно мал по величине, но должен быть достаточно характерным для сегнетоэлектриков с дефектами, т.е. монокристаллов обычного технического качества.

Литература

- 1. Олемской А.И., Флат А.Я. // УФН. 1993. 163, № 12. С. 1.
- Cappaccioli S., Lucchesi M., Rolla P.A., Ruggeri G. // J. Phys Condens. Matter. 1998. 10. P. 5595.
- Deng Z.D., Mauritz K.A. // Macromolecules. 1992. 25. P. 2369.
- 4. Jonsher A.K., Isnin A. // Ferroelectrics. 1998. 210. P. 47.
- 5. Духин С.С., Шилов В.Н. Диэлектрические явления и двойной слой в дисперсионных системах и полиэлектролитах. Киев, 1972.
- Гаврилова Н.Д., Железняк А.А., Лотонов А.М., Новик В.К. // Вестн. Моск. ун-та. Физ. Астрон. 2001. № 3. С. 61 (Moscow University Phys. Bull. 2001. No. 3. P. 74).
- 7. Брадулина Л.Г., Гаврилова Н.Д., Лотонов А.М. // Неорганические материалы. 2001. **37**, № 5. С. 607.
- Гуревич Н.Н. Электропроводность сегнетоэлектриков. Комитет стандартов и измерительных приборов СССР. М., 1969.
- Shibuya I., Hoshino S. // Japan. J. Appl. Phys. 1962. 1, No. 5. P. 249.
- Набитович И.Р., Романюк Н.Н. // Изв. АН СССР. Сер. физ. 1990. 54, № 6. С. 1225.

Поступила в редакцию 12.03.03