ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 621.315.592

ЭЛЕКТРИЧЕСКИЕ И ФОТОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ПЛЕНОК a-Si:H, ПОДВЕРГНУТЫХ ВЫСОКОТЕМПЕРАТУРНОМУ ОТЖИГУ В ВОДОРОДЕ

И.А. Курова, М.А. Нальгиева, Н. Н. Ормонт

(кафедра физики полупроводников)

E-mail: ormont@phys.msu.ru

Обнаружена фотопроводимость пленок a-Si:H, подвергнутых термическому отжигу в атмосфере водорода при температуре $T_a \ge 560$ °C. В области низких температур темновая проводимость отожженных пленок определяется прыжковым механизмом с переменной длиной прыжка. Наличие прыжкового транспорта свидетельствует о высокой плотности состояний оборванных связей кремния ($\rho \sim 10^{19}$ см⁻³ · эВ⁻¹). Показано, что появление фотопроводимости исследованных пленок после отжига может быть связано с образованием фоточувствительного слоя, имеющего микрокристаллитную структуру.

Влияние высокотемпературного отжига на свойства пленок a-Si:Н исследовалось в ряде работ [1-6]. Целью этих исследований было определение изменений параметров материала и его свойств, обусловленных структурными перестройками аморфной сетки при температуре отжига Та выше температуры получения пленки a-Si:H. Было установлено, что после высокотемпературного отжига изменяются темновая проводимость и фотопроводимость, спектральные зависимости поглощения, спектры комбинационного рассеяния и другие характеристики материала. Это, в частности, обусловлено тем, что при температурах выше 400 °C, когда происходит эффузия водорода, изменяется концентрация водородно-кремниевых связей, увеличивается концентрация активных атомов примеси, а при температурах выше 650 °C образуется микрокристаллическая фаза. В работе [7] после отжига пленок a-Si:H при 500 °С наблюдалось изменение структуры с образованием новой модификации кремния — силицина. Полной же картины изменений свойств a-Si:Н после высокотемпературного отжига до настоящего времени нет.

Отметим, что в известных нам работах высокотемпературный отжиг пленок a-Si:Н проводился в вакууме или в потоке азота. В настоящей работе высокотемпературный отжиг пленок a-Si:Н проводился в потоке водорода. Отжиг в водороде влияет на скорость эффузии водорода из пленки и может изменять характер структурной перестройки аморфной сетки, а также уменьшать механические повреждения пленки, возникающие в процессе выхода водорода.

Нами исследовались пленки a-Si:H, полученные из силана^{*)} методом осаждения в плазме ВЧ тлею-

щего разряда при температуре кварцевой подложки $T_s = 310$ °C. Толщина пленок составляла около 1 мкм. Исследованные пленки а-Si:H — неотожженная (контрольная) и отожженные в течение 30 мин при температурах 560 и 650 °C — были вырезаны из одной пластины. Контакты из Al в компланарной конфигурации напылялись одновременно на все пленки.

В работе измерялись темновая проводимость, фотопроводимость и люксамперные характеристики пленок в интервале температур 90-460 К. Спектры поглощения снимались при комнатной температуре. Эти измерения показали, что в результате отжига пленок в атмосфере водорода при температуре $T_a > 560$ °C изменяются оптические, электрические и фотоэлектрические свойства пленок. При этом в отличие от раннее исследованных нами пленок, отожженных в вакууме [5, 6], в пленках, отожженных в водороде, наряду с прыжковой проводимостью наблюдалась фотопроводимость. Фотоэдс и нагрев пленки во время ее освещения отсутствовали.

На рис. 1 показаны спектральные зависимости коэффициента поглощения α в координатах Тауца для неотожженной пленки и пленок, отожженных при 560 и 650 °C. Экстраполируя зависимости к значению $\alpha = 0$, мы получаем значения оптической ширины щели подвижности E_g . Видно, что для неотожженной пленки она равна 1.78 эВ, а для отожженных при 560 и 650 °C — соответственно 1.52 и 1.48 эВ. Таким образом, при увеличении температуры отжига E_g уменьшается, оставаясь, однако, больше значения $E_g = 1.4$ эВ для пленок аморфного негидрированного кремния. Это, по-видимому, указывает на присутствие остаточного водорода в отожженных пленках.

Приведенные на рис. 1 коэффициенты поглощения $\alpha(h\nu)$ были вычислены по данным спектров

^{*)} Пленки были выращены в ГИРЕДМЕТе.

Рис. 1. Спектральные зависимости $(\alpha \cdot h\nu)^{1/2}$ для пленок a-Si:H (неотожженной пленки 1 и отожженных в водороде при температурах 560 и 650 °С пленок 2 и 3), вычисленные из экспериментально измеренных спектров пропускания этих пленок

пропускания пленок $T(h\nu)$ по формуле, приведенной в работе [8]:

$$\alpha(h\nu) = -\frac{1}{d} \ln \left[\frac{(n(h\nu)+1)^3}{16(n(h\nu))^2} \frac{(n(h\nu)+n_s^2)}{n_s} T \right].$$
 (1)

Здесь n — показатель преломления пленки, $n_s = 1.45$ — показатель преломления подложки, а d — толщина пленки. Формула (1) применима для структуры, состоящей из плоскопараллельных пленки и подложки, в области сильного поглощения пленки (T < 0.2) в отсутствие поглощения подложки ($\alpha_s = 0$). Эти условия выполняются для наших пленок в области энергий фотонов $h\nu > 1.9$ эВ для неотожженных пленок и $h\nu > 1.7$ эВ для отожженных пленок.

В области сильного поглощения показатель преломления $n(h\nu)$, необходимый для вычисления значений $\alpha(h\nu)$ по формуле (1), определялся следующим образом. Из измеренных нами спектров пропускания света в области слабого поглощения пленок определялись значения коэффициентов пропускания в максимумах и минимумах интерференции $T_{\rm max}$ и $T_{\rm min}$, по которым вычислялись значения $n(h\nu)$ в области слабого поглощения; полученные зависимости $n(h\nu)$ экстраполировались на область сильного поглощения [9, 10], а затем использовались для вычисления $\alpha(h\nu)$ по формуле (1).

На рис. 2 приведены температурные зависимости темновой проводимости исследуемых пленок. Измерения проводились при значениях напряженности электрического поля в области линейного участка ВАХ. Видно, что темновая проводимость контрольной пленки изменяется по активационному закону

$$\sigma_d = \sigma_0 \exp\left(-\frac{E}{kT}\right). \tag{2}$$

Рис. 2. Температурные зависимости темновой проводимости пленок 1, 2, и 3 (сплошные кружки, квадраты и треугольники соответственно)

Вычисленные значения энергии активации E = 0.8 эВ и предэкспоненциального множителя $\sigma_0 = 3.2 \cdot 10^4$ Ом⁻¹·см⁻¹ характерны для зонного механизма проводимости.

Температурные зависимости и величины темновой проводимости неотожженной и отожженных пленок существенно различны. Проводимость отожженных пленок имеет значительную величину в области низких температур, и зависимость $\sigma(T)$ во всем интервале температур уже не описывается активационным законом. В области низких температур в отожженных пленках проводимость хорошо описывается формулой для трехмерной прыжковой проводимости с переменной длиной прыжка

$$\sigma_h(T) = A \exp\left[-\left(\frac{T_0}{T}\right)^{0.25}\right].$$
 (3)

Из рис. 2 видно, что величина прыжковой проводимости для пленки 3 больше, чем для пленки 2. Поэтому измерения проводимости пленки 3 проведены в большем температурном интервале. Это позволило нам определить параметры прыжковой проводимости в пленке 3 с большей точностью. Полученные параметры имеют следующие значения: $A = 1.5 \cdot 10^5$ Ом⁻¹·см⁻¹, $T_0 = 2.3 \cdot 10^8$ К.

На рис. З показано, что экспериментально измеренная темновая проводимость σ_d пленки З в области высоких температур (треугольники) имеет температурную зависимость, отличающуюся от экстраполированной в эту область зависимости прыжковой проводимости (кривая 1), при этом величина измеренной проводимости σ_d превышает величину прыжковой проводимости σ_h . Вычитая экстраполированные значения прыжковой проводимости из измеренных значений проводимости σ_d в этой области температур, мы получаем значения проводимости

Рис. 3. Экспериментально измеренные величины темновой проводимости σ_d пленки 3 (треугольники), представленные суммой величин трехмерной прыжковой проводимости $\sigma_h(T) = 1.5 \cdot 10^5 \exp\left(-(2.3 \cdot 10^8/T)^{0.25}\right)$ (кривая 1) и зонной проводимости $\sigma_c = 3.1 \cdot 10^2 \exp(-0.62/kT)$ (кривая 2). Точки на кривой 2 (кресты) вычислены как разность измеренных величин σ_d и σ_h , соответствующих кривой 1

(крестики на кривой 2), температурная зависимость которой описывается активационным законом

$$\sigma_c(T) = \sigma_{03} \exp\left(-\frac{E_3}{kT}\right),\qquad(4)$$

где $\sigma_{03} = 3.2 \cdot 10^2$ Ом⁻¹·см⁻¹, $E_3 = 0.62$ эВ. Полученное значение предэкспоненциального множителя σ_{03} указывает на то, что σ_c — зонная проводимость, а не прыжковая по состояниям хвоста зоны.

По полученным значениям σ_{03} и E_3 можно оценить положение уровня Ферми в щели подвижности пленки 3 по формуле [11]

$$E_c - F = E_{03} + kT \ln\left(\frac{\sigma_{\min}}{\sigma_{03}}\right), \qquad (5)$$

где σ_{\min} — минимальная металлическая проводимость.

В предположении, что величина σ_{\min} в отожженных пленках та же, что и в неотожженных, т.е. $\sigma_{\min} \cong 2 \cdot 10^2 \text{ Om}^{-1} \cdot \text{сm}^{-1}$ [12], получаем $E_c - F = E_{03} = 0.62$ эВ. Таким образом, уровень Ферми в отожженной пленке 3 в исследованной области температур расположен вблизи середины щели подвижности, где расположены энергетические уровни оборванных связей кремния [13]. Это указывает на то, что прыжковая проводимость в отожженных пленках осуществляется по оборванным связям кремния. Определив параметр T_0 , мы можем найти плотность состояний оборванных связей ρ из соотношения [14]

$$\rho = \frac{17.6}{ka^3 T_0},\tag{6}$$

где a — радиус локализации электрона, k — постоянная Больцмана.

Принимая радиус локализации равным 5·10⁻⁸ см, находим, что в пленке 3, отожженной при $T_a = 650$ °C, плотность состояний оборванных связей $\rho \cong 7.1 \cdot 10^{18}$ эВ⁻¹·см⁻³.

На рис. 4 показаны температурные зависимости фотопроводимости $\sigma_{\rm ph}$ для неотожженной (кривая 1) и отожженных (кривые 2, 3) пленок а-Si:Н при освещении белым светом от кварцевой галогенной лампы с интенсивностью W = 40 мВт·см⁻².

Рис. 4. Температурные зависимости фотопроводимости $\sigma_{\rm ph}$ для пленок 1, 2, и 3 (кружки, квадраты и треугольники соответственно) — при интенсивности освещения $W=40~{\rm MBt\cdot cm^{-2}}$

Видно, что величина фотопроводимости для неотожженной пленки существенно выше, чем для отожженных пленок. Фотопроводимость обоих типов пленок уменьшается при понижении температуры, однако вид их температурных зависимостей в области низких температур различен. Для отожженных пленок наблюдается стремление величины фотопроводимости к насыщению, а для неотожженной пленки наблюдается более резкое падение фотопроводимости с понижением температуры.

Измерения зависимости фотопроводимости исследованных пленок от интенсивности освещения W показали, что $\sigma_{\rm ph} \sim W^{\gamma}$, а показатель степени γ слабо изменяется с температурой как для отожженных, так и для неотожженной пленок. На рис. 5 видно, что для отожженной пленки 3 величина γ изменяется в интервале 0.8-0.9, а для неотожженной пленки — в интервале 0.65-0.75.

Ранее в работе [6] в пленках a-Si:H, подвергнутых высокотемпературному отжигу в вакууме при $T_a = 550$ °C, также наблюдалась трехмерная прыжковая проводимость с переменной длиной прыжка по оборванным связям кремния. Однако фотопро-

Рис. 5. Температурные зависимости показателей степени γ люкс-амперных характеристик пленок 1 (кружки) и 3 (треугольники), определенных в интервале интенсивностей от 40 до 2 мВт·см $^{-2}$

водимость в этих пленках не наблюдалась, хотя плотность состояний оборванных связей — основных центров рекомбинации — была практически равна значению в отожженных в водороде пленках, исследованных в настоящей работе.

В работе [15] показано, что пленка микрокристаллического аморфного кремния, полученная из силана, разбавленного водородом, методом осаждения в плазме высокочастотного разряда и содержащая кристаллическую фазу кремния в размере 12% объема, имеет значительную фотопроводимость $(\sigma_{
m ph} pprox 10^{-5}$ Ом $^{-1} \cdot$ см $^{-1}$) и низкую темновую проводимость. Соответственно обнаруженную в настоящей работе фотопроводимость пленок a-Si:H, отожженных в водороде, можно связать с наличием в них тонкого фотопроводящего микрокристаллического слоя, который почти не влияет на темновую проводимость пленки. Этот фотопроводящий слой мог возникнуть на границе с подложкой в результате образования кристаллитов малого размера в процессе отжига пленки в водороде при высокой температуре $(T_a = 600 \div 650 \,^{\circ}\text{C}).$

Непосредственное обнаружение этого микрокристаллического слоя методом измерения спектров комбинационного рассеяния света при освещении пленки со стороны подложки оказалось невозможным, поскольку области длин волн комбинационного рассеяния пленки а-Si:Н и подложки из кварцевого стекла находятся в одной области спектра. Измерения же спектров комбинационного рассеяния света отожженных пленок при освещении их со стороны пленки не давали информации о слое пленки вблизи подложки, поскольку свет от аргонового лазера, используемого в установке, сильно поглощался в верхних слоях пленки.

Для получения информации о наличии фотопроводящего слоя и о его природе в исследованных в настоящей работе отожженных в водороде пленках необходимы дальнейшие исследования.

Авторы выражают глубокую благодарность за помощь и обсуждение работы И. П. Звягину и А. Г. Казанскому.

Работа выполнена при поддержке программы «Интеграция».

Литература

- 1. Stabler D.L., Pankov J.I. // App. Phys. Lett. 1980. 37. P. 609.
- Gody G.D., Abeles B., Brooks B. at. al. // J. Non-Cryst. Sol., 1983. 59. P. 325.
- Tsu R., Hernander J.G., Pollak F.H. // J. Non-Cryst. Sol. 1984. 66. P. 109.
- Mitra S., Gleason K.K., Jia H. // J. Phys. Rev. B. 1993. 48. P. 2175.
- 5. Курова И.А., Мелешко Н.В., Ларина Э.В., Хлебникова О.П. // ФТТ. 1996. **30**. С. 12.
- 6. Курова И.А., Ормонт Н.Н., Теруков Е.И. и др. // ФТТ. 2001. **35**. С. 367.
- 7. Машин А.И., Хохлов А.Ф. // ФТП. 1999. **33**. Р. 1434.
- 8. Валеев А.Л. // Оптика и спектроскопия. 1963. 15. С. 500.
- 9. Swanepoel R. // J. Phys. E. 1984. 17. P. 896.
- 10. Swanepoel R. // J. Opt. Soc. Am. 1985. 2. P. 1339.
- 11. Overhof H., Beyer W. // Phil. Mag. B. 1983. 47. P. 377.
- 12. Kakalios J., Street R.A. // Phys. Rev. B. 1986. 34. P. 6014.
- 13. Morgado E. // Phil. Mag. B. 1991. 63. P. 529.
- 14. Звягин И.П. // Кинетические явления в неупорядоченных полупроводниках. М., 1984.
- Kamei T., Stradins P., Malsude A. // Appl. Phys. Lett. 1999.
 74. P. 1707.

Поступила в редакцию 19.05.04