ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 537.226.4

О ДИСПЕРСИИ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ СЕГНЕТОЭЛЕКТРИКА ТРИГЛИЦИНСУЛЬФАТА (ТГС) В ШИРОКОЙ ОБЛАСТИ ТЕМПЕРАТУР

А. М. Лотонов, В. К. Новик, Н. Д. Гаврилова

(кафедра физики полимеров и кристаллов; кафедра общей физики и волновых процессов)

E-mail: novikmp@orc.ru

Излагаются результаты исследования диэлектрической дисперсии сегнетоэлектрика триглицинсульфата (точка Кюри $T_C = 49, 15 \,^{\circ}$ C) в диапазоне частот $10^{-3} \div 10^7$ Гц и температур $-155 \div 90 \,^{\circ}$ C. В параэлектрической фазе дисперсия отсутствует или крайне мала. Дисперсии в своей классической форме формируется только при $T = T_C$. Возникшая доменная структура рассматривается как доминирующая причина дисперсии. В высокочастотной области ее вклад связывается с колебаниями доменной стенки, в низкочастотной — также и с образованием новых доменов, т. е. с процессами переполяризации в малых полях. В области инфранизких частот отмечено проявление вклада в дисперсию собственной электропроводности. При $T \cong T_C$ на частотах < 10^{-1} Гц наблюдалось образование запорного слоя, снижающего измеряемое значение диэлектрической проницаемости образца на два порядка.

Температурная зависимость диэлектрической проницаемости ТГС по полярной оси У изучена от 4.2 К [1, 2], ее дисперсия исследована от 78 К в интервале 10³ ÷ 3 · 10⁸ Гц [3] и около 20°С в интервале 1 ÷ 10¹³ Гц [4]. Вблизи температуры Кюри ($T_C \pm 3 \,^{\circ}$ С) дисперсия изучалась неоднократно [5-7], в том числе и по собственным шумам образцов [8]. С помощью таких исследований при $T \ge T_C$ была подтверждена роль критического замедления в образовании полярного состояния [5, 6], при $T \cong T_C$ — формирование групп однополярных ячеек (кластеров), перерастающих при $T \leq T_C$ в привычную доменную структуру [6]. Для $T = T_C - 0.02$ ° С размер доменов с четко различаемыми границами составляет менее 5.10⁻⁵ см [9]. Частоты собственной релаксации таких доменных областей близки к 10 МГц, и для $T \cong T_C$ был отмечен вклад доменных границ (или пограничных зон однополярных групп) в значение ε'_{22} даже при $f \approx 10$ МГц [6]. Там же [6] были разделены вклады в ε'_{22} собственно решетки и доменных границ, показано превышение второго над первым на порядок и установлено смещение вследствие этого максимума ε_{22}' приблизительно на 0.2°С ниже T_C. При постоянной температуре и фиксированной частоте отмечался монотонный спад со временем значения ε'_{22} [7], однозначно связанный с длительной релаксацией доменной структуры к некоторому стационарному состоянию после изменения температуры [9] или импульсного воздействия поля [10]. Работы, посвященные обсуждению причин этого общего явления, авторам неизвестны. Эта релаксация доменов обусловливает эволюцию дисперсионных спектров с постоянной времени несколько часов [7], т.е. при обычных длительностях экспериментов (4–5 часов) изучение дисперсии является исследованием нестационарного состояния кристалла. Результаты исследований, таким образом, количественно отражают не свойство данного типа кристаллов, и даже не свойство образца, а лишь свойства его текущего состояния. Для кривых дисперсии, полученных стыковкой частотных участков, измеренных в разное время и на различных приборах, анализ и трактовка результатов становятся еще более проблематичными.

В реакции сегнетоэлектрика на слабое внешнее электрическое поле должны доминировать различные механизмы применительно к отдельным частотным интервалам. Данные по диапазону $10^{-1} \div 10^2$ Гц фрагментарны и разноречивы [11, 12], что исключает целостные представления о привязке механизмов к частотной шкале. Авторам неизвестны предшествующие исследования дисперсии в интервале $10^{-3} \div 10^7$ Гц для $T > T_C$. Для создания таких представлений нами проведено исследование диэлектрической дисперсии ТГС в интервале частот $10^{-3} \div 2 \cdot 10^7$ Гц и температур $90 \div -155$ °C.

Экспериментальные результаты

Значение комплексной диэлектрической проницаемости

$$\varepsilon^* = \varepsilon' - j\varepsilon'' = C_p^*/C_0, \quad \operatorname{tg} \delta = \varepsilon''/\varepsilon',$$

где C_p^* — комплексное значение измеренной емкости образца, C_0 — значение емкости вакуума в объеме образца, которое измерялось с помощью спектрометра Novocontrol Concept 40 с полосой частот $10^{-3} \div 2 \cdot 10^7$ Гц.

Спектрометр определяет комплексное значение диэлектрической проницаемости по соотношениям амплитуд и фаз напряжения, приложенного к образцу, и тока, протекающего через образец. Суммарная погрешность измерения указанных величин не превышала 5% их абсолютного значения. Представленные ниже зависимости были получены нами в одном сеансе и отражают единое текущее состояние образцов. Исследовались совершенные образцы ТГС полярного Y-среза диаметром 12 мм и толщиной 2.6 ÷ 2.7 мм, с напыленными серебряными электродами. Значения $\varepsilon'_{22}(f)$ и $\varepsilon''_{22}(f)$ измерялись в поле с амплитудой 1 В·см⁻¹. Для получения целостной картины общих закономерностей $\varepsilon'_{22}(f)$ и $\varepsilon_{22}''(f)$ измерения проводились при понижении температуры от T = 90 до $-155 \,^{\circ}$ C.

Обсуждение экспериментальных результатов

Нетрудно видеть (рис. 1), что в парафазе, вплоть до непосредственной близости к фазовому переходу (по градуировке прибора $T_C \cong 49.15$ °C), при увеличении значения диэлектрической проницаемости дисперсия $\varepsilon'_{22}(f)$ в изученном частотном интервале или отсутствует (рис. 1, a, 6), или крайне мала (рис. 1, в). Характерным свойством дисперсии в парафазе является слабое монотонное снижение значений ε'_{22} с увеличением частоты.

Диэлектрические потери, как легко видеть из соотношений $\varepsilon_{22}'(f)$ и $\varepsilon_{22}''(f)$, также весьма малы, и значение tg δ не превышает 0.1 (рис. 1, e, 20 МГц). Даже при повышенной температуре (рис. 1, a) монокристалл остается высокодобротным $(tg \delta \approx 0.003$ на f = 1 кГц) диэлектриком, не проявляющим дисперсии. Соответственно и соотношения $\varepsilon_{22}''(\varepsilon_{22}')$ не указывают на доминирующую роль какого-либо колебательного мотива. Существенная дисперсия даже при $T_C + 0.5 \,^{\circ}\,\mathrm{C}$ начинается лишь с частот выше 108 Гц [8]. В нашем частотном диапазоне она отмечается лишь при $T_C + 0.2 \,^{\circ} \,^{\circ} \,^{\circ} C$. Рис. 1, г дает представление об аномальной дисперсии в интервале $(T_C + 0.2 \circ C) \rightarrow T_C (\varepsilon'_{22}(f))$ возрастает с повышением частоты). Поскольку не исключено, что зависимость отражает изменение состояния образца за время измерения (2.5 ч) при строгой (≈0.01 ° C) стабилизации температуры, эти данные не могут стать предметом анализа. Если же рассматривать высокочастотный спад $\varepsilon_{22}'(f)$ как порог дисперсии при этой температуре, то для пика ε_{22}'' ($f = 5.7~M\Gamma$ ц) постоянная времени некоего колебательного мотива, рассчитанная по совокупной подгонке по обеим кривым $\varepsilon \prime_{22}(f)$ и $\varepsilon_{22}''(f)$, составляет $\tau = 0.06$ мкс. Значение температуры, величины

Рис. 1. Зависимости $\varepsilon'_{22}(f)$ и $\varepsilon''_{22}(f)$ совершенного монокристалла ТГС в параэлектрической фазе при различных температурах: $a - 90, \ 6 - 60, \ e - 50.4, \ e - 49.35 \,^{\circ}$ С

 $\varepsilon'_{22} = 10^4$ и соответствующей частоты релаксации практически совпадают со значениями этих величин, полученными в работе [6]. Эти величины трактуются [6] как характеристические параметры свободных групп однополярных ячеек (кластеров), разделенных неполярной средой, трансформирующейся в тонкую доменную стенку при понижении температуры [7]. В низкочастотном интервале $1 \div 10^{-3}$ Гц существенный спад $\varepsilon'_{22}(f)$ проявляется в парафазе только в этой же температурной области.

В соответствии с принципом Кюри–Неймана в полярной сегнетофазе кристалл также должен оставаться макроскопически неполярным. Согласно симметрии ТГС при температуре фазового перехода в кристалле возникают домены с антипараллельной ориентацией спонтанной поляризации в сопредельных доменах. Зависимость $\varepsilon'_{22}(f)$ сразу же (рис. 2, *a*) приобретает четко выраженную дисперсию с классическими соотношениями между $\varepsilon''_{22}(f)$ и $\varepsilon'_{22}(f)$ (рис. 2, *б*). Иными словами, сильная частотная дисперсия является неотъемлемым признаком полярной фазы собственного сегнетоэлектрика и наблюдается при всех температурах (рис. 3, 4).

Кривые на рис. 2, а наглядно демонстрируют разнообразие реакции сегнетоэлектрика на внешнее поле различной частоты. Область температуры Кюри позволяет убедительно выделить три частотные области с доминирующими по вкладу в зависимости $\varepsilon'_{22}(f)$ и $\varepsilon''_{22}(f)$ механизмами:

 область 10⁷ ÷ 10² Гц. Дисперсия обусловлена колебанием доменных стенок;

 область 10² ÷ 1 Гц. Дисперсия обусловлена колебанием имеющихся стенок и зарождением новых доменов (переполяризация);

 область f < 1 Гц. Дисперсия обусловлена колебанием имеющихся стенок, зарождением новых доменов и собственной электропроводностью кристалла.

При других температурах проявление этих механизмов в значительной степени взаимно нивелировано и выражено менее четко.

Зависимость $\varepsilon'_{22}(f)$ (рис. 2, *a*) испытывает заметное снижение в интервале $10^2 \div 10^5$ Гц и затем при $f \approx 10^6$ Гц существенный спад значения ε'_{22} . Для этой же частоты характерен несколько размытый пик $\varepsilon_{22}''(f)$. Вполне удовлетворительное выполнение соотношения Коула-Коула (рис. 2, б) свидетельствует о проявлении действия некоторого совокупного колебательного ансамбля с усредненным эффективным временем релаксации $au_0 \cong 1.65$ мкс и большим параметром размытия ($\beta_1 = 31^\circ$). Таким ансамблем является сетка доменных стенок, отличных по величине, конфигурации и расположению в объеме. Естественно, что их интегральный вклад в абсолютное значение ε_{22}' может характеризоваться только усредненными величинами. Но порядок постоянной времени au_0 соответствует именно колебательным, а не каким-либо другим видам движения уже имеющихся доменных границ.

Рис. 2. Зависимости $\varepsilon'_{22}(f)$ и $\varepsilon''_{22}(f)$ (a) и вид соотношения $\varepsilon''_{22}(\varepsilon'_{22})$ (б) совершенного монокристалла ТГС в сегнетоэлектрической фазе при T = 49.04 °C

Рис. 3. Зависимости $\varepsilon'_{22}(f)$ и $\varepsilon''_{22}(f)$ (a) и вид соотношения $\varepsilon''_{22}(\varepsilon'_{22})$ (б) совершенного монокристалла ТГС при $T = 20 \,^{\circ}$ С

 ε'_{22}

определяется дефектами, в первую очередь поверхностными, препятствующими переполяризации ячеек стенки. Поэтому вклад стенок в значение $\varepsilon'_{
m 22dom}$, пропорциональный общей длине доменных границ и дипольному моменту ячейки, должен слабо зависеть от частоты ниже порога дисперсии в пределах нескольких порядков.

Зависимость $\varepsilon'_{22}(f)$ на рис. 2, *а* подтверждает это заключение. При фазовом переходе формируется максимальное число мелких (≤ 10 мкм) доменов [9], ответственных за предельный ($\varepsilon'_{\rm 22dom} \sim 10^5$) вклад стенок в абсолютное значение $\varepsilon'_{\rm 22}$. За время наших измерений топография доменов остается постоянной и их вклад при понижении частоты на три порядка (участок заштрихованной области на рис. 2, a от $5 \cdot 10^4$ до 10^1 Гц) не меняется. Такой характер проявления дисперсии является типичным для собственных сегнетоэлектриков и отмечался, в частности, для ВаТіО₃ [13].

С понижением температуры домены укрупняются $(\sim 100 \text{ мкм})$ [10], общая длина их стенок многократно снижается и, несмотря на возрастание дипольного момента ячейки, вклад $\varepsilon'_{
m 22dom}$ (заштрихованные участки для $f = 10^7 \div 10^3$ Гц на рис. 3, a и 4, а) становится минимальным. В этом же интервале частот продолжает выполняться соотношение Коула-Коула (рис. 3, б и 4, б).

Ниже этой частотной области все зависимости $\varepsilon_{22}^{\prime}(f)$ и $\varepsilon_{22}^{\prime\prime}(f)$ качественно одинаковы и отражают другой механизм дисперсии, отличаясь лишь граничной частотой его формирования (при $f\leqslant 5$ Гц для 49.04° С (рис. 2, *a*), при $f \le 10^2$ Гц для 20° С (рис. 3, *a*) и при $f \le 5 \cdot 10^3$ Гц для -155° С (рис. 4, *a*)).

Доминирующий механизм дисперсии на этом участке отличен от колебаний доменной стенки по ряду признаков:

1) характеристические времена порядка секунд (см. рис. 2, 6, 3, 6, 4, 6) относят этот механизм к разряду процессов, медленно развивающихся в слабых полях;

2) представление кривых для двух разнесенных температур в координатах $\lg \varepsilon'_{22}(\lg \omega)$ и $\lg \varepsilon''_{22}(\lg \omega)$ (рис. 5) свидетельствует о выполнении при обеих температурах одного и того же фракталь-но-степенного закона $\varepsilon'_{22} \sim \omega^{-n}$ и $\varepsilon''_{22} \sim \omega^{-m}$ при $n = 0.2 < 0.5, \ m = 0.16 < 0.5$. Равенство и значение этих показателей степени указывают на присутствие в формировании зависимостей $\varepsilon'_{22}(f)$ и $\varepsilon''_{22}(f)$ при данных температурах сегнетофазы, тождественной иерархии одинаковых диффузных (по терминологии [14]) процессов. Значительный интервал температур и существенное (в полтора раза) различие в значениях P_s распространяют это заключение как общее на низкочастотные области при всех температурах;

3) в пределе при $f \to 0$, как известно, даже в слабых полях образцы становятся монодоменными.

80

Puc. 4. Зависимости $\varepsilon_{22}'(f)$ и $\varepsilon_{22}''(f)$ (a) и вид соотношения $\varepsilon_{22}''(\varepsilon_{22}')$ (б) совершенного монокристалла ТГС при $T = -155 \,^{\circ}\mathrm{C}$

В соответствии с моделью [13] общая величина заряда Q, создаваемого на электродах сегнетоэлектрика в малом внешнем поле, является суммой обычного индуцированного заряда Q_{ind} и заряда переключения доменных стенок $Q_{
m dom}$: $Q = Q_{ind} + Q_{dom}$. Отсюда эффективное значение проницаемости $\varepsilon'_{22} = \varepsilon'_{22ind} + \varepsilon'_{22dom}$. Эти компоненты удалось экспериментально разделить в области $T \approx T_C - 0.05^{\circ}$ С [6, 7] и показать, что при $T \leqslant T_C - 0.1^{\circ}$ С для f > 5 МГц $\varepsilon'_{22} \approx \varepsilon'_{22 \text{ ind}}$. Зависимость $\varepsilon'_{22 \text{ ind}}(f)$ аппроксимируется прямой, исходящей из точки $\varepsilon'_{22ind} = \varepsilon'_{22\infty}$ (10⁷ Гц) и проходящей по линии зависимости $\varepsilon'_{22}(f)$, или, что то же самое, параллельно «полке» этой кривой. Заштрихованная область на рис. 2, a показывает вклад $\varepsilon'_{22ind}(f)$ в суммарное значение ε'_{22} . Нетрудно видеть, что даже при возможной ошибке аппроксимации этот вклад доминирует.

Величина смещения доменной стенки ниже частотного порога дисперсии ограничивается в принципе только размерами образца. Однако реальная амплитуда колебаний стенки в данном поле

Рис. 5. Взаимная параллельность кривых $\lg \varepsilon'_{22}(\lg \omega)$ и $\lg \varepsilon''_{22}(\lg \omega)$ для T = 20 и -155 °C свидетельствует о едином механизме зарождения и развития доменов при этих температурах в слабом электрическом поле. Величины $P_s(20$ °C) и $P_s(-155$ °C) отличаются в полтора раза

Совокупность этих признаков характерна для процессов переполяризации в малых полях [15, сс. 128, 365] с зарождением доменов на дефектах поверхности и их прорастанием в объеме.

Отсюда на промежуточных частотах при $f \rightarrow 0$ вклад в величину $Q_{\rm dom}$ должна вносить непосредственная переполяризация микрообъемов, продолжающаяся в течение полупериода, первоначально усредненно индицируемая как монотонное возрастание ε'_{22} $(f \to 0)$. Переполяризуемая компонента (заштрихованные области на рис. 3, а и 4, а) в значениях $\varepsilon'_{22}(f)$ и $\varepsilon''_{22}(f)$ многократно превышает индуцируемую. Снижение вклада колебаний стенки и доминирование механизма переполяризации приводит к вырождению низкочастотных участков зависимостей $\varepsilon_{22}''(\varepsilon_{22}')$ из дуг в прямые (рис. 2, δ , 3, δ , 4, δ). При разумных временах измерений для $f \leqslant 10^{-2}$ усреднение весьма затруднено и индицируемые значения ε'_{22} $(f \to 0)$ и ε''_{22} $(f \to 0)$ демонстрируют скачки соответствующих величин (рис. 3, *a*, 4, *a*), отражая тем самым эффект Баркгаузена в малых полях. Абсолютная величина переключаемой поляризации, пропорциональная площади вновь образующихся доменов и значению P_s, невелика (~ 10⁻³*P*_s) [15, с. 133], хотя и много больше, чем индуцируемая поляризация. Явление переключения формирует при измерениях и псевдоэффект «отрицательных потерь» (рис. 3, а) — следствие временных сдвигов между фазой внешнего поля и развитием процесса переключения. Представляется возможным создать и условия «отрицательной диэлектрической проницаемости».

Данные кривые позволяют выделить в некоторых областях температур и частот влияние на дисперсию собственной электропроводности образцов.

В области температуры фазового перехода заведомо известно состояние повышенной электропроводности. При $f \leq 5$ Гц начинается резкое, на порядок, увеличение ε_{22}'' ($f \to 0$) с некоторым ростом уже исключительно большого значения ε'_{22} $(f \to 0)$ (включение механизма переполяризации), сменяющееся при $f \leqslant 0.4$ Гц крутым монотонным спадом обеих величин. В интервале $10^{-3} \leqslant f \leqslant 4 \cdot 10^{-2}$ Гц значения ε''_{22} снижаются на два порядка, значения ε'_{22} — на порядок.

Резкий спад емкости исследуемого сегнетоэлектрического конденсатора может произойти только вследствие изменившихся под действием инфранизкочастотного поля свойств объема или создания этим полем слабополяризуемого слоя. Последнее явление — формирование постоянным полем запорного, или обедненного носителями, слоя, называемое также поляризацией либо необратимостью электродов, или двойным электрическим слоем, хорошо изучено для протонопроводящих твердых электролитов [16].

Отсюда следует исходная гипотеза: протонная проводимость, активированная фазовым переходом, сначала формирует, в дополнение к колебаниям стенок и созданию новых доменов, вклад в ε_{22}'' и ε_{22}' , а потом участвует в образовании запорного слоя, увеличивая его эффективность при снижении частоты. Перенос протона может осуществляться как по сетке водородных связей, так и путем непосредственного переноса между анионами. Значение критической частоты $f \approx 4 \cdot 10^{-2}$ Гц, возможно, связано с изменением условий движения протонов, когда независимое перемещение протонов по перепутанным траекториям сменяется их направленным взаимосвязанным движением.

Похожая закономерность характерна для зависимостей ε_{22}'' и ε_{22}' , измеренных в парафазе (рис. 1, *a*, *б*, *в*). Повышенная проводимость при этих температурах достаточна для возрастания значений ε_{22}'' и ε_{22}' при $f \leq 1$ Гц, но еще мала для создания запорного слоя на частотах $f \geq 10^{-3}$ Гц, хотя подобная тенденция и прослеживается.

Если высказанная гипотеза о роли проводимости верна, то дисперсионная методика может служить эффективным средством исследования эволюции запорного слоя в точке Кюри.

Заключение

Изложенные результаты создают целостную картину взаимосвязи причин диэлектрической дисперсии модельного объекта — монокристалла триглицинсульфата (ТГС) в пара- и сегнетофазе в интервале частот 10⁻³ ÷ 10⁷ Гц. Выводы исследования должны быть характерны и для других собственных сегнетоэлектриков с водородными связями.

Авторы признательны профессору Б. А. Струкову за критические замечания и обсуждение статьи.

Литература

 Kuramoto K., Motegi H., Nakamura E., Kosaki K. // J. Phys. Soc. Japan. 1986. 55. P. 377.

- Novikov V.N., Novik V.K., Esengaliev A.B., Gavrilova N.D. // Ferroelectrics. 1991. 118. P. 59.
- 3. Петров В.М., Коган О.И. // Кристаллография. 1970. 15. С. 1018.
- Поплавко Ю.М., Переверзева Л.П., Мериакри В.В., Ушаткин Е.Ф., Огурцов С.В., Ящишин П.Я. // ФТТ. 1973. 15, № 4. С. 1250.
- 5. Takayama Y., Deguchi K., Nakamura E. // J. Phys. Soc. Japan. 1984. 53, N 12. P. 4121.
- 6. Pawlaczyk C. // Ferroelectrics. 1993. 140. P. 127.
- 7. Zhang J. // Ferroelectrics. 2002. 281. P. 105.
- Godefroy L. // J. de Physique (France). 1972. Suppl. 33, fasc. 4. P. C2-44.
- 9. Nakatani N. // Japan J. Appl. Phys. 24. P. 528
- 10. Tomita N., Orihara H., Ishibashi Y. // J. Phys. Soc. Japan. 1989. 58, N 4. P. 1190.

- 11. Шильников А.В., Галиярова Н.М., Горин С.В., Васильев Д.Г., Вологирова Л.Х. // Изв. АН СССР. Сер. физ. 1991. **55**, № 3. С. 578.
- 12. Zhang J. // Phys. Stat. Sol. (a). 2002. 193, N 2. P. 347.
- Петров В.М. // Изв. АН СССР. Сер. физ. 1969. 33, № 7. С. 1113.
- Jonscher A.K. Universal relaxation law. London, 1996. P. 78.
- 15. *Лайнс М., Гласс А.М.* Сегнетоэлектрики и родственные им материалы. М., 1981.
- 16. Baranov A.I., Khiznichenko V.P., Sandler V.A., Shuvalov L.A. // Ferroelectrics. 1988. **81**. P. 183.

Поступила в редакцию 23.05.05