УДК 54-161:53.004.12:669-974

ВЛИЯНИЕ НИЗКОТЕМПЕРАТУРНОЙ ОБРАБОТКИ НА ТЕРМОМАГНИТНОЕ ПОВЕДЕНИЕ АМОРФНЫХ СПЛАВОВ НА ОСНОВЕ ЖЕЛЕЗА И КОБАЛЬТА

С. Г. Зайченко^{*)}, Н. И. Захаренко^{**)}, А. М. Глезер^{*)}, Н. С. Перов

(кафедра магнетизма)

E-mail: perov@magn.ru

Методом Фарадея в температурном диапазоне 300–900 К исследованы температурные зависимости магнитной восприимчивости $\chi(T)$ аморфных сплавов на основе железа и кобальта до и после низкотемпературной обработки в среде жидкого азота (T = 77 K). Установлено, что такая обработка не вносит качественных изменений в общий характер зависимостей $\chi(T)$, однако вызывает устойчивые изменения температуры Кюри T_C , которые свидетельствуют о гомогенизации материала аморфных металлических сплавов и его переходе в новое состояние метастабильного равновесия.

Введение

Аморфные металлические сплавы (АМС) обладают уникальным сочетанием физических свойств (механических, магнитных, коррозионных и т.д.), позволяющим отнести их к классу перспективных материалов. Свойства АМС определяются их химическим составом и зависят от методов и условий их получения. Известно, что АМС находятся в состоянии метастабильного равновесия, поэтому их физические свойства зависят от внешних воздействий. В этом случае качественно новые физические свойства АМС могут быть связаны с малейшими структурными изменениями [1]. Одним из наиболее важных механизмов, определяющих свойства АМС в диапазоне от комнатной температуры до температуры кристаллизации в пределах устойчивости аморфного состояния, является структурная релаксация. В то же время низкотемпературная обработка (НТО) позволяет воздействовать на физические свойства аморфных сплавов при температурах ниже 273 К [2, 3]. В работе [3] обобщены результаты теоретических и экспериментальных исследований влияния HTO на магнитные, механические, магнитооптические и ряд других свойств АМС в зависимости от параметров термоциклирования (температуры и продолжительности) и состава сплавов. Данные структурных исследований свидетельствуют о необратимых изменениях структуры АМС, вызванных НТО. Предложена физическая модель низкотемпературного воздействия на изменения структуры и основных характеристик аморфных сплавов (низкотемпературный ΔT -эффект), объясняющая результаты экспериментов [4]. Определены необходимые условия реализации ΔT -эффекта, за-

ключающиеся в высокой скорости охлаждения образцов АМС ($\sim 10^4 - 10^5$ K/c) для достижения уровня термоупругих напряжений, позволяющих обеспечить разрыв ковалентных связей ассоциатов. Экспериментально установлено, что движущей силой дрейфа свободных атомов металлоидов в пределах ближнего порядка являются колебания образцов на собственных частотах. Не вызывает сомнения, что по крайней мере на начальных стадиях НТО указанные факторы играют решающую роль, однако ряд экспериментальных проявлений низкотемпературного ΔT -эффекта до настоящего времени не имеет удовлетворительных объяснений. В ряде работ [5, 6] высказано предположение, что низкотемпературный ΔT -эффект представляет мартенситоподобные превращения в малых объемах. Несомненно, этот подход имеет свои достоинства, однако в настоящее время нет экспериментальных данных, в частности структурного характера, подтверждающих это предположение.

Основной целью настоящей работы является исследование влияния НТО на характер термомагнитных зависимостей АМС на основе Fe и Co типа металл-металлоид и их интерпретация в рамках предложенной модели низкотемпературного ΔT -эффекта [3].

Экспериментальные методы

Многокомпонентные аморфные сплавы Fe₈₁Si₄B₁₃C₂, Co₅₈Ni₁₀Fe₅Si₁₁B₁₆, Fe₆₁Co₂₀Si₅B₁₄, Fe₇₇Ni₁Si₉B₁₃ (*a*, *б*, *в*, *е* соответственно, табл. 1) получены закалкой из расплава в виде лент шириной 10–25 мм и толщиной 20–25 мкм из химических

^{*)} Институт металлофизики и функциональных материалов; ГНЦ Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина, Москва, Россия.

^{**)} Национальный университет им. Т.Г. Шевченко, Киев, Украина.

Температуры Кюри T_C и температуры кристаллизации T_{x1} , T_{x2} аморфных металлических сплавов на основе Fe и Co и после низкотемпературной обработки

$(I = I T \mathbf{K}, \tau = 3 \mathbf{\Psi})$				
AMC	Обработка	T_C , K	T_{x1}, \mathbf{K}	T_{x2}, K
а	свежезакаленный	637.0	721.0	748.0
	HTO	635.0	719.0	744.0
б	свежезакаленный	752.0	713.0	758.0
	HTO	750.0	713.0	764.0
в	свежезакаленный	480.0	831.0	
	HTO	477.5	836.0	
г	свежезакаленный	675.5	758.0	853.0
	HTO	673.0	755.0	856.0

элементов высокой чистоты. Продолжительность HTO в жидком азоте при T = 77 К составляла 3 ч. Результаты рентгенографических исследований свидетельствовали об аморфном состоянии всех образцов как в исходном состоянии, так и после HTO в жидком азоте.

Температурные зависимости магнитной восприимчивости $\chi(T)$ получены на автоматическом магнитометре Фарадея в температурном диапазоне 300-900 К в среде чистого аргона в магнитном поле напряженностью 4.2×10^5 А/м. Скорость нагрева составляла 10 К/мин. Относительная ошибка при измерениях проницаемости $\Delta \chi/\chi$ была менее 1%. Точность измерения температуры не превышала 0.5 К.

Экспериментальные результаты и их обсуждение

Температурные зависимости магнитной проницаемости $\chi(T)$ AMC образцов были измерены в режиме «нагрев-охлаждение» и представлены на рис. 1-4. Вид зависимостей $\chi(T)$, как было обнаружено, типичен для аморфных металлических стекол [7]. Это свидетельствует о наличии фазовых переходов первого и второго рода в исследованном температурном диапазоне (300-900 К). Они заключаются в переходе из ферромагнитного состояния в парамагнитное при температуре Кюри Т_С и далее из парамагнитного в кристаллическое состояние с двумя температурами кристаллизации T_{x1} и T_{x2} , за исключением АМС (см. табл. 1, в), характеризовавшейся только T_{x1} . Ход кривых $\chi(T)$ для образцов, подвергнутых НТО (T = 77 K, $\tau = 3$ ч), подобен кривым, полученным при аналогичных измерениях свежезакаленных образцов типа металл-металлоид. Однако наблюдаются некоторые количественные отличия между образцами в исходном состоянии и после HTO. Они хорошо видны при сопоставлении температурных зависимостей магнитной проницаемости до и после воздействия низкотемпературной обработки: $\Delta \chi = \chi_{\text{init}} - \chi_{\text{LTT}} = f(T)$ (см. рис. 1–4). Характер $\Delta \chi$ -кривых свидетельствует о влиянии НТО на термомагнитное поведение

Рис. 1. Температурная зависимость проницаемости χ (\blacksquare – нагрев, \bullet – охлаждение) и $\Delta \chi$ (\circ) АМС Fe₈₁Si₄B₁₃C₂

Рис. 2. Температурная зависимость проницаемости χ (\blacksquare – нагрев, \bullet – охлаждение) и $\Delta \chi$ (\circ) АМС Со₅₈ Ni₁₀ Fe₅ Si₁₁ B₁₆

Рис. 3. Температурная зависимость проницаемости χ (\blacksquare – нагрев, \bullet – охлаждение) и $\Delta \chi$ (\circ) АМС Fe₆₁ Co₂₀ Si₅ B₁₄

АМС, особенно в температурной области от T_C до температур кристаллизации T_{x1} . В то же время различия между кривыми $\chi(T)$ для свежезакаленных и обработанных АМС в области температур, превышающих T_C , могут быть интерпретированы как результат различия констант спин-волновой жесткости [8].

Значения температуры Кюри для исследованных AMC были найдены из зависимостей $\chi(T)$ по стан-

Рис. 4. Температурная зависимость проницаемости χ (\blacksquare – нагрев, \bullet – охлаждение) и $\Delta\chi$ (\circ) АМС Fe₇₇ Ni₁₀ Fe₅ Si₁₁ B₁₆

дартной методике [7]. Так как температура Кюри AMC (см. табл. 1, в) находится вблизи от температуры кристаллизации, величина T_C для этого сплава была определена экстраполяцией уравнения

$$\chi \sim (T_C - T)^{\beta}, \tag{1}$$

где β — критическая константа, величина которой $\approx 1/3$ [9].

Температуры кристаллизации T_{x1} и T_{x2} были найдены из зависимостей $\chi(T)$. Они соответствовали максимальной скорости возрастания $\chi(T)$ и обусловлены образованием кристаллических ферромагнитных фаз с высокой T_C . Полученные значения T_C , T_{x1} и T_{x2} для свежезакаленных и обработанных AMC суммированы в табл. 1. Видно, что некоторое снижение температуры Кюри T_C в результате НТО наблюдалось для всех исследованных AMC. Принимая во внимание, что величина T_C , определяемая теорией молекулярного поля как

$$T_C = \frac{2S(S+1)}{3k} \sum_{i,j} J_{ij},$$
 (2)

где S — среднее значение спина, приходящегося на один атом, $J_{i,j}$ — обменная энергия между i-м и ј-м атомами, учитывающая все атомы ближнего порядка, обнаруженные изменения величины Т_С могут свидетельствовать о некотором снижении обменного взаимодействия между атомами металлов, что может интерпретироваться как изменение атомов ближайшего окружения (а именно обогащения ближайшего окружения атомами Si и B). Это наглядно подтверждается видом структурного фактора АМС (см. табл. 1, в), полученным методом дифракцией нейтронов [10]. В соответствии с этими данными наблюдается сдвиг между вторым и третьим максимумами структурного фактора после НТО по сравнению с исходным состоянием. Кроме того, Мёссбауровские исследования распределения эффективных полей в АМС (см. табл. 1, г) показали, что эти изменения заключаются в обогащении ближайшего окружения атомов Fe атомами металлоидов (В или Si) [11].

Данные, приведенные в табл. 1, позволяют заключить, что основные изменения процесса кристаллизации наблюдаются на второй стадии, соответствующей образованию обогащенных атомами металлоидов фаз (T_{x2}) . Это также свидетельствует о том, что под влиянием НТО происходит перераспределение атомов металлоидов. Согласно модели низкотемпературного ΔT -эффекта, скорость охлаждения ленточных образцов АМС толщиной 20-25 мкм должна составлять не менее 10⁴-10⁵ К/с для создания уровня термоупругих напряжений 10-20 ГПа, достаточного для разрыва ковалентных связей ассоциатов (боридов, силицидов, фосфидов и т.д.). Напряжения, возникающие при свободных колебаниях в момент полного охлаждения образцов АМС, приводят к перемещениям атомов металлоидов на расстояния, не превышающие величины (~2 нм) ближнего порядка. Это вызывает гомогенизацию структуры АМС и соответственно переход в новое метастабильное состояние после НТО.

Дополнительным аргументом, подтверждающим вышеизложенные результаты, служат относящиеся к парамагнитной восприимчивости АМС (см. табл. 1, в) экспериментальные зависимости, характеризующиеся широкой парамагнитной областью в пределах устойчивости аморфного состояния. На рис. 5 представлены зависимости $\chi(T)$, полученные в парамагнитной области. Их можно аналитически описать как для свежезакаленного состояния, так и после НТО обобщенным соотношением Кюри, пропорциональным обратной линейной зависимости $(\chi - \chi_0)^{-1}$. Найденная величина локализованного магнитного момента оказалась равной $\mu=2.50\mu_B$ (для свежезакаленного состояния) и $\mu = 2.45 \mu_B$ (для АМС, подвергнутого НТО). Это снижение магнитного момента, скорее всего, связано с повышением доли атомов металлоидов (Si, B) в ближайшем окружении «магнитных» атомов (Fe, Co) в результате HTO. Это полностью согласуется с вышеизложенными результатами и работами [10, 11].

Рис. 5. Температурная зависимость $(\chi - \chi_0)^{-1}$ в парамагнитной области АМС Со₅₈ Ni₁₀ Fe₅ Si₁₁ B₁₆: 1 — НТО, 2 — свежезакаленный

Заключение

Проведенные исследования влияния низкотемпературной обработки на термомагнитное поведение аморфных сплавов на основе Fe и Co показали постоянное снижение температуры Кюри и изменение температуры кристаллизации фаз, обогащенных атомами металлоидов. Эти эффекты связаны с увеличением доли металлоидов в пределах ближнего порядка за счет разрыва ковалентных связей ассоциатов, вызываемого термоупругими напряжениями. Дрейф атомов металлоидов происходит вследствие действия напряжений, возникающих за счет колебаний образцов AMC на собственных частотах в ходе HTO. Результаты проведенных исследований находятся в хорошем согласии с физической моделью низкотемпературного ΔT -эффекта.

Авторы выражают благодарность за частичную материальную поддержку работы РФФИ (гранты 04-2-16266 и 03-02-17164) и фонду ИНТЕЛС.

Литература

 Amorphous metallic alloys / Ed. F. E. Luborsky. London; Boston; Durban; Singapore; Sydney; Toronto; Wellington, 1983.

- Zaichenko S.G., Perov N.S., Glezer A.M. et al. // JMMM. 2000. 215-216. P. 297.
- 3. Зайченко С.Г., Глезер А.М. // Докл. РАН. 2002. **387**. С. 617.
- 4. Глезер А.М., Зайченко С.Г. // Изв. РАН. Сер. физ. 2003. **67**. С. 823.
- Zaichenko S., Radkovskaya A. et al. // JMMM. 2003.
 258–259. P. 567.
- Zhukov A.P., Stangeev B.I. // J. Appl. Phys. 1993. 73. P. 5716.
- Maslov V., Nakonechna O., Nosenko V. // Functional Materials. 2000. 7. P. 822.
- 8. Glassy metals: magnetic, chemical and structural properties / Ed. R. Hasegava. Boca Raton, 1983.
- 9. Тикадзуми С. // Физика ферромагнетизма. М., 1983.
- Zaichenko S., Glezer A., Calvo-Dalborg M. et al. // Proc. 10th Int. conf. «Rapidly quenched and metastable materials». Bangalore (India), 1999. 1. P. 58.
- 11. Зайченко С.Г., Глезер А.М., Качалов В.М. и др. // Тр. 18 Междунар. школы-семинара «Новые магнитные материалы микроэлектроники». М., 2000.

Поступила в редакцию 26.09.05