УДК 539.172;537.621

ИССЛЕДОВАНИЕ МАГНИТНЫХ СВОЙСТВ ФЕРРИТОВ СИСТЕМЫ NiGa $_x$ Al $_x$ Fe $_{2-2x}$ O $_4$

Л. Г. Антошина, Е. Н. Евстафьева, А. С. Козьмин, А. И. Кокорев, А. А. Опаленко, А. И. Фиров

(кафедра общей физики и магнитоупорядоченных сред)

E-mail: lantoshina@yandex.ru

Исследованы магнитные свойства системы разбавленных ферритов никеля NiGa_x Al_x Fe_{2-2x}O₄ (x = 0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 и 0.8). Обнаружено аномальное поведение температурных зависимостей спонтанной намагниченности $\sigma_s(T)$ и коэрцитивной силы $H_c(T)$ для составов с $x \ge 0.4$. Установлено, что ферриты системы с замещением $x \ge 0.4$ имеют фрустрированную магнитную структуру, что подтверждено результатами исследований мёссбауэровских спектров.

Введение

Фрустрация магнитных связей в ферритах со структурой шпинели возникает при наличии в образцах различных по знаку и величине обменных взаимодействий [1], разбавлении обеих подрешеток немагнитными ионами [2], при облучении быстрыми нейтронами [3]. При исследовании разбавленных шпинелей с фрустрированными магнитными связями было обнаружено аномальное поведение намагниченности [4], магнитострикции [5], магнитосопротивления [6]. Облучение феррита никеля NiFe₂O₄ быстрыми нейтронами привело к такому перераспределению магнитных связей, в результате которого возникли аномалии магнитной анизотропии [7]. Поэтому в качестве объектов исследования были выбраны разбавленные ферриты никеля NiGa_xAl_xFe_{2-2x}O₄, где x = 0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 и 0.8. При выборе этой системы мы руководствовались работой Поола и Фарача [2], в которой для ферритов со структурой шпинели определены концентрации замещений магнитных ионов на немагнитные, при которых возникают различные виды магнитного упорядочения: ферримагнитное, антиферромагнитное, парамагнитное, состояние спинового стекла. Учитывая энергию предпочтения ионов Ga³⁺ к А-узлам, а ионов Al³⁺ к В-узлам и согласно диаграмме из работы [2], составы с замещением $x \ge 0.4$ для исследованной нами системы $NiGa_x Al_x Fe_{2-2x} O_4$ должны иметь фрустрированные магнитные связи.

Образцы и методы исследования

Образцы были синтезированы по керамической технологии. Первый отжиг проводился при температуре 1000°С в течение 4 ч, второй — при температуре 1350°С также в течение 4 ч с последующим медленным охлаждением. Все образцы отжигались на воздухе, одновременно в одной печи.

Рентгенофазовый анализ показал, что приготовленные ферриты являются однофазными шпинелями. Параметры решетки были определены при комнатной температуре на дифрактометре ДРОН-1 с использованием излучения Fe- K_{α} . Для расчета параметров решетки c и a использовались рефлексы типа <553>.

Намагниченность измерялась баллистическим методом в интервале температур от 80 до 720 К, в полях до 10.8 кЭ. Спонтанная намагниченность σ_s была найдена из экстраполяции зависимости $\sigma(H)$ к H = 0. Коэрцитивная сила H_c определялась из петли гистерезиса.

Мёссбауэровские спектры измерялись при T = 295 К и обрабатывались по программе «UNIVEM MS».

Обсуждение результатов

Для феррита никеля NiFe₂O₄ обнаружена кубическая структура шпинели, параметр решетки a, которой хорошо согласуется с литературными данными [8], а для замещений с $x \ge 0.2$ имеет место искаженная структура шпинели с соотношением осей c/a > 1. На рис. 1 приведены параметры решетки a и c и их отношение для исследуемых ферритов. Видно, что отношение осей c/a линейно возрастает с ростом x.

Рентгеновская плотность d_x образцов, рассчитанная по формуле $d_x = (8M/Na^3)$ г/см³, где M — молекулярный вес, N — число Авогадро, a — параметр решетки, уменьшалась с ростом x. В табл. 1 для всех образцов приведены параметры решетки c и a, их отношение c/a, объем элементарной ячейки V_c , величина $a^* = (V_c)^{1/3}$, рентгеновская плотность d_x , плотность ρ .

Исследование намагниченности показало, что с увеличением концентрации х немагнитных ионов Ga $^{3+}$ и Al $^{3+}$ в образцах системы

						T a	блица 1
Образец	с, А	a, À	c/a	$a^* = (V_c)^{1/3}, \text{ Å}$	V_c , A^3	<i>dx</i> , г/см ³	<i>ρ</i> , г/см ³
$NiFe_2O_4$	—	8.34	1.000	8.34	580	5.37	4.88
$NiGa_{0.2}Al_{0.2}Fe_{1.6}O_4$	8.36	8.31	1.006	8.33	577	5.33	4.62
$NiGa_{0.3}Al_{0.3}Fe_{1.4}O_4$	8.37	8.29	1.010	8.32	575	5.31	4.56
$NiGa_{0.4}Al_{0.4}Fe_{1.2}O_4$	8.37	8.27	1.012	8.31	573	5.30	4.19
$NiGa_{0.5}Al_{0.5}Fe_{1.0}O_4$	8.37	8.26	1.014	8.30	571	5.28	4.09
$NiGa_{0.6}Al_{0.6}Fe_{0.8}O_4$	8.38	8.25	1.016	8.29	569	5.26	4.03
$NiGa_{0.7}Al_{0.7}Fe_{0.6}O_4$	8.38	8.22	1.020	8.27	566	5.25	3.79
$NiGa_{0.8}Al_{0.8}Fe_{0.4}O_4$	8.41	8.2	1.026	8.27	561	5.23	3.76

Рис. 1. Зависимости параметров решетки *с*, *а* и отношение осей *с/а* для образцов системы NiGa_x Al_x Fe_{2-2x} O₄ (*x* = 0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 и 0.8)

Рис. 2. Температурные зависимости спонтанной намагниченности $\sigma_s(T)$ для образцов системы NiGa_x Al_x Fe_{2-2x} O₄ (x = 0.0, 0.3, 0.4, 0.5, 0.6, 0.7 и 0.8)

NiGa_xAl_xFe_{2-2x}O₄ происходит изменение вида зависимости спонтанной намагниченности $\sigma_s(T)$ от кривой Q-типа к аномальному виду. На рис. 2

даны зависимости спонтанной намагниченности от относительной температуры $\sigma_s(T)$ для составов с x = 0.0, 0.3, 0.4, 0.5, 0.6, 0.7 и 0.8. За температуру Кюри T_C принималась температура, при которой как спонтанная намагниченность, так и коэрцитивная сила обращались в нуль. Видно, что для составов с x = 0.0 и 0.3 зависимость $\sigma_s(T)$ является кривой Q-типа (по Неелю), а для составов с $x \ge 0.4$ она имеет аномальный (не неелевский) вид.

Температурные зависимости спонтанной намагниченности $\sigma_s(T)$, коэрцитивной силы $H_c(T)$ и производной спонтанной намагниченности $d\sigma_s/dT)(T)$ для составов с x = 0.2, 0.5 и 0.6 соответственно приведены на рис. 3–5. Видно, что для состава с x = 0.2 значения σ_s и H_c обращаются в нуль при одной и той же температуре — температуре Кюри T_c , при нагревании образца величина H_c уменьшается, а модуль производной $|d\sigma_s/dT|$ возрастает (рис. 3).

Тогда как для ферритов с замещением x = 0.5и 0.6 наблюдается резкое уменьшение спонтанной намагниченности при температуре $T_{
m tr}$, более низкой, чем температура Кюри Т_С (рис. 4 и 5). При этом аномальным также является поведение зависимостей $(d\sigma_s/dT)(T)$ и $H_c(T)$. В области низких температур величина $|d\sigma_s/dT|$ возрастает с повышением температуры вплоть до температуры $T_{\rm tr}$, а при дальнейшем нагревании образца значение $|d\sigma_s/dT|$ только уменьшается. Что касается коэрцитивной силы H_c , то при повышении температуры выше T_{tr} наблюдается ее рост до значения $H_{c \max}$, а затем уменьшение вплоть до температуры T_C . Аналогичное поведение зависимостей $\sigma_s(T)$, $H_c(T)$ и $(d\sigma_s/dT)(T)$ было получено для составов с x = 0.4, 0.7 и 0.8.

Измерение остаточной намагниченности σ_r показало, что величина σ_r не меняет знак вплоть до температур T_C . Следовательно, аномальное поведение $\sigma_s(T)$ и $H_c(T)$ не связано с температурой компенсации.

Температура перехода $T_{\rm tr}$ ($T_{\rm tr(extr)}$) для составов с замещением $x \ge 0.4$ определялась путем экстраполяции линейной части зависимости $\sigma_s(T)$ к $\sigma_s = 0$. Также величина $T_{\rm tr}$ ($T_{\rm tr}(TD_{\rm coef})$) была найдена методом термодинамических коэффициентов. Из табл. 2, где приведены значения

Рис. 3. Температурные зависимости спонтанной намагниченности $\sigma_s(T)$, коэрцитивной силы $H_c(T)$ и производной спонтанной намагниченности по температуре $(d\sigma_s/dT)(T)$ для образца с x = 0.2 системы NiGa_x Al_x Fe_{2-2x} O₄

Х	$T_{ m tr}$ (из $TD_{ m coef}$), К	$T_{\rm tr(extr)},~{ m K}$	<i>T</i> _{<i>C</i>} , K
0.0			858 ± 40
0.2			760 ± 40
0.3			720 ± 40
0.4	615 ± 15	615 ± 15	760 ± 40
0.5	500 ± 15	520 ± 15	690 ± 15
0.6	430 ± 15	420 ± 15	670 ± 10
0.7	285 ± 15	305 ± 15	625 ± 10
0.8	172 ± 15	205 ± 15	250 ± 10

Таблица 2

температур $T_{\rm tr}$, определенных обоими способами, а также температуры Кюри T_C для всех исследованных составов, видно, что для образцов с замещением $x \ge 0.4$ температура $T_{\rm tr} < T_C$. Значение температуры Кюри T_C для чистого никелевого феррита взято из работы [9]. Таким образом, установлено, что для составов с $x \ge 0.4$ дальний магнитный порядок возникает при температуре $T_{\rm tr}$, меньшей, чем температура Кюри T_C .

Из табл. 2 также видно хорошее совпадение для значений *T*_{tr}, определенных двумя способами.

Рис. 4. Температурные зависимости спонтанной намагниченности $\sigma_s(T)$, коэрцитивной силы $H_c(T)$ и производной спонтанной намагниченности по температуре $(d\sigma_s/dT)(T)$ для образца с x = 0.5 системы NiGa_x Al_x Fe_{2-2x} O₄

На рис. 6 для исследуемых нами составов приведены зависимости температур Кюри $T_C(x)$ и температур перехода $T_{tr}(x)$. Из этого рисунка видно, что температуры T_C и T_{tr} монотонно убывают с увеличением концентрации немагнитных ионов, причем, как и следовало ожидать [10], при малом разбавлении значение T_C изменяется линейно при изменении x. Также следует отметить, что величина температуры T_{tr} линейно убывает с увеличением концентрации немагнитных ионов x.

Согласно теоретическим работам Ван Хеммена [11, 12], если с понижением температуры имеет место фазовый магнитный переход из парамагнитного состояния в состояние спинового стекла (или спин-стекольное состояние), то при дальнейшем понижении температуры должен иметь место еще один фазовый магнитный переход в разупорядоченную магнитную фазу (ферримагнетизм + спиновое стекло).

На основании наших экспериментальных результатов и результатов работ [11, 12] можно предположить, что в разбавленных ферритах системы NiGa_x Al_x Fe_{2-2x}O₄ с замещением $x \ge 0.4$ имеют место два фазовых магнитных перехода. При охлаждении образца при температуре Кюри T_C имеет

Рис. 5. Температурные зависимости спонтанной намагниченности $\sigma_s(T)$, коэрцитивной силы $H_c(T)$ и производной спонтанной намагниченности по температуре $(d\sigma_s/dT)(T)$ для образца с x = 0.6 системы NiGa_x Al_x Fe_{2-2x} O₄

Рис. 6. Зависимости температуры Кюри T_C и температуры перехода T_{tr} от состава x

место переход из парамагнитного состояния в спин-стекольное, а при более низкой температуре $T_{\rm tr}$ — переход из спин-стекольного состояния во фрустрированную магнитную структуру, обусловленную фрустрацией магнитных связей.

Была проведена термомагнитная обработка образцов системы NiGa_x Al_x Fe_{2-2x}O₄ с концентрацией $x \ge 0.4$. Намагниченность σ измерялась в магнитном поле H = 370 Э при нагревании в интервале

температур 290 ÷ 675 К. После этого величина σ измерялась при охлаждении в этом же магнитном поле. Оказалось, что зависимость $\sigma(T)$, снятая при нагревании, практически совпадает с зависимостью $\sigma(T)$, полученной при охлаждении. Такое безгистерезисное поведение величины σ свидетельствует в пользу кластерного представления магнитной структуры выше температуры $T_{\rm tr}$.

Спин-стекольное состояние представляет собой кластерную структуру, образованную несколькими координационными сферами и обусловленную ближним магнитным порядком. Фрустрированная магнитная структура представляет собой кластеры, образованные дальним магнитным порядком.

В подтверждение нашего предположения о фрустрации магнитных связей в исследуемых образцах на рис. 7 приведены мёссбауэровские спектры ферритов системы NiGa_x Al_x Fe_{2-2x} O₄ (x = 0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 и 0.8), полученные при T = 295 К. Спектры для составов с $x=0 \div 0.5$ можно представить в виде суперпозиции двух секстетов, соответствующих ионам Fe³⁺ в А-и В-узлах. Влияние случайного распределения ионов Ga³⁺ и Al³⁺ вокруг ионов Fe³⁺ проявляется в уширении зеемановских компонент спектра для составов с x = 0.2, 0.3, 0.4, 0.5.

Сверхтонкая структура спектра для состава с x = 0.6 при T = 295 К неразрешена. Этот спектр, по-видимому, свидетельствует о появлении фрустрированной магнитной структуры феррита. Можно предположить, что у феррита с замещением x = 0.6магнитная структура представляет собой кластеры, образованные как ближним, так и дальним магнитным порядком, так как мёссбауэровский спектр состоит из узкого квадрупольного дублета и широкого «размытого» фона, характерного для магнитного упорядочения. Для концентраций x = 0.7, 0.8 мёссбауэровский спектр представляет собой дублеты. По-видимому, у состава с концентрацией x = 0.7при комнатной температуре ($T_C = 625$ K) магнитная структура представляет собой в основном достаточно крупные кластеры, образованные ближним магнитным порядком. Для состава с = 0.8 температура измерения T > T_C. Полученная нами последовательность мёссбауэровских спектров в зависимости от концентрации примеси х является характерной для ферритов-шпинелей. Например, аналогичные мёссбауэровские спектры при T = 295 К были получены авторами работы [13] для разбавленных ферритов-хромитов никеля $NiAl_x Cr_x Fe_{2-2x} O_4$.

Следует отметить аномальное поведение зависимости $H_c(T)$ для составов с $x \ge 0.4$ выше температуры $T_{\rm tr}$. Оказалось, что для ферритов системы NiGa_x Al_x Fe_{2-2x} O₄ с фрустрированной магнитной структурой ($x \ge 0.4$) величина H_c в интервале температур от $T_{\rm tr}$ до T_C имеет максимум (рис. 4, 5). Впервые рост величины коэрцитивной силы H_c в области высоких температур, когда намагничен-

Рис. 7. Мёссбауэровские спектры ферритов системы NiGa_x Al_x Fe_{2-2x} O₄ (x = 0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 и 0.8), измеренные при T = 295 K

ность становится малой величиной, наблюдался для марганец-цинковых ферритов в работе [14]. Авторы этой работы отмечают, что для всех изученных до того времени ферромагнетиков установлено, что при температуре Кюри остаточное намагничивание обращается в нуль и этот факт иногда используется для опытного определения температуры Кюри T_C. Также в [14] подчеркнуто (это обычно считается само собой разумеющимся, согласно определению), что величина Н_с должна обращаться в нуль при той же температуре, при которой исчезает остаточное намагничивание, т.е. при температуре T_C . К сожалению, в этой работе намагниченность измерялась в поле H = 160 Э, и поэтому величина Н_с измерялась на частном цикле. Более подробное исследование спонтанной намагниченности и коэрцитивной силы для этих образцов было продолжено в работе [15]. Обнаружено, что за точкой Кюри, определенной по методу термодинамических коэффициентов ($\alpha = 0$), имеется очень длинный «хвост» спонтанной намагниченности (до ~70°С), при этом в Mn-Zn ферритах выше точки Кюри обнаружен аномальный рост коэрцитивной силы.

На рис. 8 для ферритов исследуемой системы $NiGa_x Al_x Fe_{2-2x} O_4$ дана зависимость максимальной величины Н_{с max} от концентрации немагнитных ионов x, наблюдающейся в интервале температур от $T_{\rm tr}$ до T_C . Видно, что с увеличением x величина $H_{c \max}$ возрастает. Также на этом рисунке приведена концентрационная зависимость величины магнитного момента $n_0(x)$ системы NiGa_x Al_x Fe_{2-2x} O₄. Величина n₀ определялась из экстраполяции зависимости $\sigma_s(T)$ к значению спонтанной намагниченности при T = 0 К. Видно, что для феррита с замещением $x \ge 0.4$ с фрустрированной магнитной структурой имеет место скачок величины n₀ по сравнению с магнитным моментом ферритов с обычным ферримагнитным упорядочением, а для составов больших концентраций немагнитных ионов $(x \ge 0.4)$ величина n_0 снова убывает с ростом x.

Рис. 8. Зависимости максимальной величины коэрцитивной силы $H_{c \max}(T)$ ($x \ge 4$) и магнитного момента $n_0(x)$ (при 0 К) от концентрации xнемагнитных ионов системы NiGa_x Al_x Fe_{2-2x}O₄

С другой стороны, из рис. 1 видно, что замещение ионов Fe³⁺ на немагнитные ионы Ga³⁺ и Al³⁺ приводит к увеличению тетрагонального искажения c/a в исследуемых ферритах. По-видимому, это связано с выходом ионов Ni²⁺ в A-узлы решетки шпинели по мере увеличения доли немагнитных ионов в составе образцов. Известно, что ион Ni²⁺ в тетраэдрических узлах, будучи ян-теллеровским ионом, вызывает искажение этих узлов с соотношением c/a > 1.

Таким образом, нами установлено, что для составов с $x \ge 0.4$ в интервале температур от $T_{\rm tr}$ до T_C , т.е. в спин-стекольном состоянии, взаимодействие кластеров, обусловленных ближним магнитным порядком, приводит к увеличению величины коэрцитивной силы.

Выводы

Впервые приготовлены и изучены магнитные свойства и мёссбауэровские спектры составов системы NiGa_x Al_x Fe_{2-2x}O₄ (x = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 и 0.8). Обнаружено, что составы с $x \ge 0.2$ имеют тетрагонально-искаженную структуру шпинели. Сделано предположение, что это связано с выходом ионов Ni²⁺ в A-узлы.

Установлено, что для составов с $x \ge 0.4$ имеет место аномальное поведение температурных зависимостей спонтанной намагниченности $\sigma_s(T)$, коэрцитивной силы $H_c(T)$ и производной спонтанной намагниченности $(d\sigma_s/dT)(T)$. Методом термодинамических коэффициентов определено, что для составов с $x \ge 0.4$ дальний магнитный порядок возникает при температуре $T_{\rm tr}$ меньшей, чем температура Кюри T_C .

Сделано предположение, что для составов с $x \ge 0.4$ при температурах $T_{\rm tr}$ и T_C имеют место два фазовых магнитных перехода. При T_C происходит переход из парамагнитного состояния в спин-стекольное состояние, обусловленное ближним магнитным порядком, а при $T_{\rm tr}$ — переход из спин-стекольного состояния во фрустрированную магнитную структуру, образованную дальним магнитным порядком.

Обнаружено, что для составов с $x \ge 0.4$ в интервале температур от T_{tr} до T_C зависимости $H_c(T)$ имеют максимум. Сделано предположение, что аномальное поведение коэрцитивной силы в спин-стекольном состоянии связано с магнитостатическим взаимодействием кластеров, в состав которых входят ионы Ni_A^{2+} с размороженным орбитальным моментом.

Установлено, что разбавленные ферриты NiGa_x Al_x Fe_{2-2x} O₄ ($x \ge 0.4$) имеют фрустрированную магнитную структуру, что подтверждено результатами исследований мёссбауэровских спектров. Из мёссбауэровских спектров для составов с x = 0.4, 0.5 и 0.6 видно, что увеличение степени фрустрации возрастает с ростом x.

Работа выполнена при частичной финансовой поддержке Министерства образования и науки РФ (грант 1351).

Литература

- 1. Coey J.M.D. // J. Appl. Phys. 1978. 49, N 3. P. 1646.
- 2. Poole C.P., Farach H.A. // Z. Phys. B. 1982. 47. P. 55.
- Гошицкий Б.Н., Мень А.Н., Синицкий И.А., Чукалкин Ю.Г. // Структура и магнитные свойства окисных магнетиков, облученных быстрыми нейтронами. М., 1986.
- Антошина Л.Г., Кукуджанова Е.Н. // ФТТ. 1998, 40, № 8. С. 1505.
- Antoshina L.G., Goryaga A.N., Kukudzhanova E.N. // J. Magn. Magn. Mater. 1998. 188, N 1-2. P. 228.
- Antoshina L.G. // J. Phys.: Condens. Matter. 2001. 13. P. 127.
- 7. Петров В. В., Чукалкин Ю.Г., Гошицкий Б.Н. // ФТТ. 1980. **22**. С. 581.
- Hastings J.M., Corliss L.M. // Rev. Mod. Phys. 1953.
 25. P. 114.
- 9. Смит Я., Вейн Х. // Ферриты. М., 1962.
- 10. Яковлев Ю.М., Генделев С.Ш. Монокристаллы ферритов в радиоэлектронике. М., 1975. С. 360.
- van Hemmen J.L., van Enter A.C.D., Canisius J. // Z. Phys. B. Condensed Matter. 1983. 50. P. 311.
- Van Enter A.C.D., van Hemmen J.L. // Phys. Rev. A. 1984. 29, № 1. P. 355.
- Chhaya U.V., Trivedi B.S., Kulkarni R.G. // J. Mater. Sci. Lett. 1999. 18. P. 1177.
- 14. Большова К.М., Елкина Т.А. // Вестн. Моск. ун-та. Матем. Мех. Астрон. Физ. Хим. 1957. **2**. С. 95.
- 15. Белов К.П., Большова К.М., Елкина Т.А. // Изв. АН СССР. Сер. Физ. 1957. **XXI**, № 8. С. 1047.

Поступила в редакцию 22.11.05