АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

УДК 537.531.15

РЕЗУЛЬТАТЫ АНАЛИЗА ДАННЫХ О МЮОННОЙ КОМПОНЕНТЕ ШИРОКИХ АТМОСФЕРНЫХ ЛИВНЕЙ ПО НАБЛЮДЕНИЯМ НА УСТАНОВКЕ ШАЛ МГУ

Н. Н. Калмыков, Г. В. Куликов, В. П. Сулаков, В. Н. Калмыков

(НИИЯФ; кафедра физики космоса)

E-mail: valery@eas.sinp.msu.ru

Проанализированы данные о мюонной компоненте широких атмосферных ливней (ШАЛ), полученные с помощью четырех мюонных детекторов, входивших в состав установки ШАЛ МГУ. Наличие такой информации позволяет строить функции пространственного распределения индивидуальных ШАЛ. Для сравнения экспериментальных данных с расчетом использовался пакет CORSIKA: были разыграны ливни от пяти групп первичных ядер в рамках модели адронных взаимодействий QGSJET. Проведенный анализ позволил оценить массовый состав ПКЛ при первичных энергиях 10¹⁵ и 10¹⁷ эВ.

Введение

Исследование массового состава первичных космических лучей (ПКЛ) проводилось многими авторами [1-3]. Актуальным этот вопрос остается и сейчас. Достоверные данные о массовом составе ПКЛ необходимы для решения проблемы излома в энергетическом спектре ПКЛ при энергии около $3 \cdot 10^{15}$ эВ. Если предположить, что в парциальных энергетических спектрах ядер, входящих в состав ПКЛ, излом происходит при энергии $E_{\rm cr} = 3 \cdot 10^{15} \cdot Z$ эВ, где Z — заряд данной группы ядер, то за изломом должно происходить обогащение состава тяжелыми ядрами. В этой работе мы продолжаем исследование массового состава ПКЛ, начатое в [2, 3], путем анализа различных характеристик мюонной компоненты широких атмосферных ливней (ШАЛ) по данным установки ШАЛ МГУ. В настоящей работе проанализированы функции пространственного распределения (ФПР) мюонов.

1. Экспериментальные данные

На установке [4] регистрировались мюоны с пороговой энергией 10 ГэВ. Четыре мюонных детектора μ_i , входившие в состав установки (рис. 1), находились на глубине 40 м в.э.: детектор площадью 36.4 м² в центре, остальные три площадью 18.2 м² на расстояниях 150–300 м от центра установки. За период 1984–1990 гг. была получена большая статистика ливней, содержащих данные о мюонной компоненте ШАЛ в диапазоне первичных энергий $10^{15}-5 \cdot 10^{17}$ эВ. В процессе предварительного анализа этих данных выяснилось, что методика обработки результатов наблюдения от всех четырех детекторов весьма трудоемка, требует

Рис. 1. План расположения детекторов установки ШАЛ МГУ (расстояние в метрах)

больших компьютерных ресурсов и значительных затрат машинного времени. Поэтому на начальном этапе в работе [5] были использованы данные только от одного — центрального детектора мюонов.

Плотность потока мюонов в [5] определялась методом максимального правдоподобия [6] в предположении, что число зарегистрированных мюонов на заданном расстоянии от оси ливня подчиняется закону Пуассона и средняя плотность мюонов зависит от числа заряженных частиц в ливне по закону $\rho_{\mu} \sim N_e^{\alpha}$, где $\alpha = 0.78$. Использовались ливни в широком диапазоне по числу заряженных частиц $N_e = 10^5 \div 5 \cdot 10^7$. Для выявления возможной зависимости ФПР мюонов от числа заряженные данные были разбиты на группы с интервалом $\Delta \lg N_e = 0.2$. Полученные средние ФПР хорошо описывались зависимостью

вида

$$p_{\mu}(r) = \frac{N_{\mu}}{2\pi R_0^{2-n} \Gamma(2-n)} R^{-n} \exp(-R/R_0), \quad (1)$$

где $R_0=80$ м и значение показателя n меняется от 0.55 ± 0.03 при $N_e\cong10^5$ до 0.7 ± 0.03 при $N_e\cong5\cdot10^7$.

Обработка данных от всех четырех детекторов была закончена в 2004 г. [7]. В результате, обладая информацией о плотности потока мюонов в ливне более чем от одного детектора, стало возможно строить индивидуальные ФПР мюонов в достаточно мощных ливнях с числом заряженных частиц $N_e \ge 3 \cdot 10^7$. На рис. 2 приведены экспериментальные ФПР индивидуальных ливней. Кривые на рисунке представляют собой результат аппроксимации экспериментальных точек функцией (1). Как видно из рисунка, экспериментальные данные хорошо согласуются с аппроксимирующей функцией.

Новые данные позволили уточнить вид средних ФПР на расстояниях порядка 300 м от оси ШАЛ

Рис. 2. Экспериментальные ФПР индивидуальных ливней: • — ливень с $N_e = 9 \cdot 10^7$ и $\theta = 7^\circ$; ■ — $N_e = 2 \cdot 10^8$ и $\theta = 15^\circ$

Рис. 3. Средние ФПР мюонов с разным числом частиц lg N_e в ливне: (1) 6.0 ÷ 6.2, (2) 6.4 ÷ 6.6, (3) 6.8 ÷ 7.0, (4) 7.2 ÷ 7.4; ● — экспериментальные ФПР, □ — результат моделирования

(рис. 3), а также зависимость среднего числа мюонов в ливне от числа заряженных частиц в области больших значений N_e . На рис. 3 прерывистыми линиями показан результат аппроксимации средних экспериментальных ФПР функцией (1). Была определена зависимость средней плотности мюонов от числа заряженных частиц на расстоянии 50 м от оси ШАЛ, которая хорошо описывается соотношением $\rho_{\mu} \sim N_e^{\alpha}$, где $\alpha = 0.77 \pm 0.02$ и практически совпадает с соответствующим параметром в зависимости $N_{\mu}(N_e)$. Выбор расстояния 50 м обусловлен тем, что оно наилучшим образом представлено в ливнях разной мощности.

2. Методика расчета

Существующие в настоящее время программы для прямого моделирования ШАЛ позволяют получить информацию, необходимую для сравнения с экспериментальными данными. Была выбрана программа CORSIKA версии 6.031. Для описания адронных взаимодействий при сверхвысоких энергиях использовалась модель QGSJET [8]. Параметры атмосферы соответствовали условиям на установке ШАЛ МГУ. Для уменьшения времени моделирования программа компилировалась с опцией «истончения» [9]. Всего было разыграно 3 · 10⁵ ливней в диапазоне энергий 10¹⁴-10¹⁸ эВ от пяти групп первичных ядер: протоны (р), гелий, М-группа $(Z = 6 \div 9)$, H-группа $(Z = 10 \div 20)$ и железо (Z = 26). Весь диапазон первичных энергий был разбит на интервалы ширины $\Delta \lg E_0 = 0.1$.

Выходные файлы программы содержат координаты всех частиц, достигших уровня наблюдения, относительно оси ливня. Процедура построения ФПР мюонов в индивидуальных ливнях сводилась к следующему: вся область диска ливня на уровне наблюдения разбивалась на кольца площади $S_n = \pi (R_{n+1}^2 - R_n^2)$, где $\lg (R_{n+1} - R_n) = 0.2$ и $R_1 = 0$, а затем определялась средняя плотность мюонов $\rho_{\mu}(R) = N_n/S_n$, где N_n — число частиц, попавших в *n*-е кольцо, в предположении азимутальной симметрии распределения частиц в диске ливня.

Построение средних ФПР по числу заряженных частиц для каждого типа первичной частицы проводилось в следующем порядке. Определялись средние зависимости $\rho_{\mu}(R)$ в каждом *i*-м интервале первичной энергии (lg E_0^i , lg E_0^i + Δ lg E_0) для ливней с числом заряженных частиц в интервале (lg N_e^i , lg N_e^i + Δ lg N_e), где Δ lg $N_e = 0.2$ и *j* — номер интервала. Полученные зависимости суммировались с весовым коэффициентом ~ $I(E_0, Z(k))$. Функция $I(E_0, Z(k))$ — парциальный энергетический спектр первичных частиц с зарядом Z группы с номером k [10]. Значение показателя парциальных спектров

до излома принималось равным 2.7. Оптимальная величина показателя за изломом была выбрана путем минимизации величины χ^2 и оказалась равной 3.7. В итоге средняя ФПР определялась как сумма пяти парциальных:

$$\rho_{\mu}^{\text{tot}}(R) = \sum_{k=1}^{5} P_k \, \rho_{\mu}(R,k). \tag{2}$$

Коэффициенты P_k определяли долю ядер группы k. Определение величин P_k осуществлялось при помощи критерия согласия Пирсона путем минимизации величины

$$\chi^{2} = \sum_{m} (\rho_{\mu}^{\exp}(m) - \rho_{\mu}^{th}(m))^{2} / \rho_{\mu}^{th}(m), \qquad (3)$$

где $\rho_{\mu}^{\exp}(m)$ — экспериментальное значение плотности мюонов в точке с номером m, $\rho_{\mu}^{\text{th}}(m)$ — теоретическое значение плотности, зависящее от P_k . Минимизация осуществлялась прямым перебором всех возможных составов ПКЛ с шагом 1%. Если вероятность согласия для какого-либо состава превышала 0.1, то данный состав принимался как возможный. Затем определялись коэффициенты P_k , усредненные по всем принятым составам, и определялась средняя ФПР.

3. Результаты

Как уже было сказано, наличие в составе установки ШАЛ МГУ четырех мюонных детекторов позволяет строить ФПР индивидуальных ливней. На рис. 4 приведена экспериментальная ФПР ливня с зенитным углом $\theta = 7^{\circ}$ и числом заряженных частиц $N_e = 9 \cdot 10^7$, а также результаты расчета настоящей работы — ливни от протона и ядра железа с такими же параметрами. Сплошная кривая — результат аппроксимации функцией (1).

Рис. 4. ФПР индивидуальных ливней: ■ — экспериментальная ФПР, 1 — результат моделирования для протона, 2 — результат моделирования для ядра железа

16 ВМУ. Физика. Астрономия. № 6

В результате расчета с применением критерия согласия Пирсона из парциальных были получены средние ФПР мюонов (рис. 3) и сделана оценка массового состава ПКЛ в области излома в первичном спектре и за ним при первичной энергии 10¹⁷ эВ (таблица).

Массовый состав ПКЛ, %

Е ₀ , эВ	Группа	Работа [2]	Настоящая работа
1015	p + He	62 ± 5	65 ± 4
	H + Fe	19 ± 5	20 ± 3
1017	p + He	24 ± 5	18 ± 5
	H + Fe	63 ± 7	63 ± 3

С использованием этих данных построена зависимость средней плотности числа мюонов с ростом числа заряженных частиц (рис. 5), приведенная к растоянию 50 м от оси ливня. На рисунке также нанесены результаты расчета с использованием модели QGSJET, полученные в работе [11] для состава ПКЛ из одного типа ядра: нижняя прямая — первичные протоны, верхняя — ядра железа. Из рисунка видно, что тенденция к утяжелению состава просматривается и здесь: экспериментальные и расчетные значения плотности приближаются к верхней прямой.

Рис. 5. Зависимость $\rho_{\mu}(N_e)$ на расстоянии 50 м до оси ШАЛ: \Box — экспериментальные точки, • — результат моделирования

Заключение

Продолжая цикл работ [2, 3] по исследованию массового состава ПКЛ, мы проанализировали ФПР мюонов. В отличие от [2, 3] в настоящей работе привлечены новые, более полные экспериментальные данные о мюонной компоненте ШАЛ: ФПР индивидуальных ливней и средние ФПР мюонов. Результаты проведенного анализа подтверждают предположения об утяжелении массового состава за изломом в первичном спектре ПКЛ. Оценка состава, выполненная в работе, не противоречит данным [2, 3]. С этим выводом согласуется и вид зависимости $\rho_{\mu}(N_e)$.

Работа выполнена при финансовой поддержке РФФИ (грант 05-02-16401).

Литература

- 1. *Panasyuk M.I.* // Preprint 98-33/534. Skobeltsyn Research Institute of Nuclear Physics, Moscow State University. M., 1998.
- 2. Вишневская Е.А., Калмыков Н.Н., Куликов Г.В. и др. // Ядерная физика. 1999. **62**. С. 300.
- 3. Вишневская Е.А., Калмыков В.Н., Калмыков Н.Н. и др. // Вестн. Моск. ун-та. Физ. Астрон. 2004. № 1. С. 28 (Moscow University Phys. Bull. 2004. N 1. P. 35).
- 4. Вернов С.Н., Христиансен Г.Б., Атрашкевич В.Б. и др. // Изв. АН СССР. Сер. физ. 1980. **44**, № 3. С. 537.

- 5. *Сулаков В.П. //* Дисс. ... канд. физ.-мат. наук. НИИЯФ МГУ. 1999.
- Khristiansen G.B. // Proc. 14th ICRC. V. 8. Munich, 1975. P. 2801.
- 7. *Калмыков Н.Н., Куликов Г.В., Соловьева В.И.* и др. // Изв. РАН. Сер. физ. 2004. **68**, № 11. С. 1608.
- Kalmykov N.N., Ostapchenko S.S., Pavlov A.I. // Nucl. Phys. (Proc. Suppl.). 1997. B52. P. 17.
- Hillas M. // Nucl. Phys. (Proc. Suppl.). 1997. B52. P. 29.
- Kalmykov N.N., Pavlov A.I. // Proc. 26th ICRC. V. 4. Salt Lake City, 1999. P. 263.
- Kalmykov N.N., Ostapchenko S.S., Pavlov A.I. // Nucl. Phys. B. (Proc. Suppl.). 1997. B52. P. 17.

Поступила в редакцию 25.11.05