ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА

УДК 538.221

ДИНАМИКА ДОМЕННОЙ СТЕНКИ В ДВУХСЛОЙНОЙ МАГНИТООДНООСНОЙ ПЛЕНКЕ

В. В. Рандошкин, А. А. Мастин, Н. Н. Сысоев

(кафедра молекулярной физики)

E-mail: sysoev@phys.msu.su

Путем решения уравнений Слончевского численным методом исследуется движение изолированной доменной стенки в двухслойной одноосной магнитной пленке с разными параметром затухания и гиромагнитным отношением в слоях.

Введение

Большой интерес к магнитоодноосным монокристаллическим пленкам феррит-гранатов (МПФГ) и их интенсивное исследование были вызваны прежде всего разработкой запоминающих устройств на цилиндрических магнитных доменах (ЗУ на ЦМД) [1–3]. В дальнейшем эти материалы нашли широкое применение в различных магнитооптических устройствах [4, 5]. МПФГ выращивают методом жидкофазной эпитаксии из переохлажденного раствора-расплава на подложках немагнитных гранатов [3, 5, 6].

При теоретическом описании свойств МПФГ используется модель однородной по толщине пластины с осью легкого намагничивания (ОЛН), направленной по нормали к плоскости пластины [7, 8]. Хотя МПФГ являются трехподрешеточным ферримагнетиком, однако при описании динамических свойств их часто рассматривают как ферромагнетик, характеризующийся суммарной намагниченностью Mи эффективным значением гиромагнитного отношения γ . Движение намагниченности описывают уравнением Ландау–Лифшица–Гильберта [7, 9, 10]

$$\frac{d\boldsymbol{M}}{dt} = -\gamma \left[\boldsymbol{M}, \frac{\delta \boldsymbol{w}}{\delta \boldsymbol{M}}\right] + \frac{\alpha}{M} \left[\boldsymbol{M}, \frac{d\boldsymbol{M}}{dt}\right], \qquad (1)$$

где $\delta w/\delta M$ — функциональная производная плотности полной свободной энергии, α - безразмерный параметр затухания Гильберта. Это уравнение используют при описании вращения намагниченности, движения доменных стенок (ДС) и ЦМД, а также ферромагнитного резонанса.

Фундаментальной особенностью жидкофазной эпитаксии является то, что начальная и заключительная стадии эпитаксиального роста являются нестационарными процессами. Непременным следствием этого является образование переходных поверхностных слоев на границах пленка-подложка и пленка-воздух, отличающихся по химическому составу и магнитным параметрам от основного объема пленки [3, 5, 11, 12]. Особенно сильно наличие этих слоев сказывается вблизи точки компенсации момента импульса, где, в частности, скорость срыва стационарного движения ДС достигает уокеровского предела [13, 14], характерного только для однородного безграничного ферромагнетика [7, 9].

Целью настоящей работы являлось сравнение динамического поведения векторов намагниченности в двухслойной пленке и в однослойных пленках аналогах слоев. Параметры слоев выбирались так, чтобы динамические эффекты, которые имеют место в двухслойной пленке, проявлялись более ярко.

Параметры МПФГ

Эпитаксиальные МПФГ обладают уникальной возможностью варьирования химического состава: наличие трех катионных междоузлий с разными размерами позволяет вводить в состав этих пленок более половины всех элементов таблицы Менделеева, что предопределяет многообразие их физических свойств. Наличие трех магнитных подрешеток, связанных ферримагнитным взаимодействием, и наведенной в процессе роста магнитной анизотропии дает возможность в зависимости от состава МПФГ в широких пределах изменять их параметры.

В уравнение Ландау–Лифшица–Гильберта (1) в качестве параметров входят M, γ и α . Намагниченность насыщения $4\pi M$ зависит от химического состава МПФГ и может изменяться от 0 до ~2000 Гс [2, 3]. Эффективное значение гиромагнитного отношения определяется соотношением быстрорелаксирующих (\mathbb{R}^{3+}) и медленно релаксирующих (Fe^{3+} и Gd³⁺) магнитных ионов в составе МПФГ [15]

$$\gamma = \gamma_0 \frac{M_{\rm R} + M_{\rm Fe} + M_{\rm Gd}}{M_{\rm Fe} + M_{\rm Gd}},\tag{2}$$

где γ_0 — гиромагнитное отношение ионов Fe³⁺, $M_{\rm R}$, $M_{\rm Fe}$, $M_{\rm Gd}$ — суммарные магнитные моменты

ионов \mathbb{R}^{3+} , Fe³⁺ и Gd³⁺ соответственно. Безразмерный параметр затухания Гильберта связан с другими параметрами:

$$\alpha = \frac{\Lambda \gamma}{M},\tag{3}$$

где Λ — приведенный параметр затухания Ландау-Лифшица не зависит от других параметров магнитного материала, а определяется только типом и концентрацией быстрорелаксирующих ионов в нем, причем эти ионы дают аддитивный вклад в Λ . В точке компенсации магнитного момента (KMM) $M \to 0$ и $\gamma \to 0$. В точке компенсации момента импульса (КМИ) $\gamma \to \pm \infty$, а α может принимать большие значения ($\gg 1$).

При высокой намагниченности насыщения МПФГ могут обладать высокой одноосной магнитной анизотропией [2], так что условие для фактора качества материала

$$Q = \frac{K}{2\pi M^2} > 1, \tag{4}$$

где K — константа одноосной магнитной анизотропии, необходимое для обеспечения ориентации векторов намагниченности вдоль ОЛН, может быть достаточно легко выполнено с помощью соответствующего выбора состава МПФГ.

Модель и граничные условия

При расчетах полагали, что исследуемая пленка состоит из двух слоев, причем і-й характеризуется намагниченностью насыщения $4\pi M_i$, константой обменного взаимодействия A_i , гиромагнитным отношением γ_i , безразмерным параметром затухания Гильберта α_i и константой одноосной магнитной анизотропии К_i, причем ОЛН в каждом слое направлена по нормали к плоскости пленки (вдоль оси z на рис. 1), а фактор качества материала $Q_i \gg 1$. Вдоль оси *x* (рис. 1) параметры слоев не изменяются, и в слоях отсутствует анизотропия в плоскости ху. В исходном состоянии ДС разграничивает два полубесконечных пространства, причем левое (*u* < 0) представляет собой домен с намагниченностью, направленной вверх вдоль оси z, а правое (y > 0) — домен с намагниченностью,

Рис. 1. Доменная стенка в двухслойной одноосной магнитной пленке

направленной вниз вдоль оси *z*. Внешнее магнитное поле прикладывается параллельно оси *z* в момент времени *t* = 0.

Результаты и обсуждение

Целью численного расчета являлось определение, каким образом в двухслойной магнитоодноосной пленке происходит поворот векторов намагниченности от направления вдоль оси +z при $y = -\infty$ к направлению вдоль оси -z при $y = +\infty$.

Уравнение Ландау-Лифшица для рассматриваемого случая сводится к уравнениям Слончевского [7]

$$\frac{\delta\sigma}{\delta\psi} = 2\frac{M}{\gamma}(\dot{q} - \alpha\Delta\dot{\psi}),$$

$$\frac{\delta\sigma}{\delta q} = -2\frac{M}{\gamma}\left(\dot{\psi} + \frac{a}{\Delta}\dot{q}\right),$$
(5)

где M = M(z), $\gamma = \gamma(z)$, $\alpha = \alpha(z)$, σ — плотность энергии ДС, Δ — ширина ДС, q = q(z) — профиль ДС, $\psi = \psi(z)$ — угол, образуемый проекцией вектора намагниченности на плоскость *xy* и осью *x* (угол выхода вектора намагниченности).

Плотность энергии ДС для случая, когда ДС почти параллельна плоскости *xz*, имеет следующий вид [7]:

$$\sigma = \sigma_0 \left[1 + \frac{1}{2} (\nabla q)^2 \right] + 2A\Delta_0 (\nabla \psi)^2 + 4\pi \Delta_0 M^2 \sin \psi - 2M H_z q, \quad (6)$$

где $\sigma_0 = 4(AK)^{1/2}$ — плотность энергии ДС в отсутствие внешнего магнитного поля.

Выражение для ширины ДС Δ имеет следующий вид [7]:

$$\Delta = \Delta_0 \left[1 - \frac{1}{2} Q^{-1} \sin^2 \psi \right], \tag{7}$$

где $\Delta_0 = (A/K)^{1/2}$ — ширина покоящейся ДС.

Подставив (7) в (6), получим систему уравнений, описывающих движение ДС в случае двухслойной пленки:

$$\frac{2M}{\gamma}(1+\alpha^2)\frac{\partial\varphi}{\partial t} = 4\alpha A \frac{\partial^2\varphi}{\partial z^2} + \sigma_0 \frac{\partial^2 q}{\partial z^2} - - 4\pi\alpha M^2 \sin 2\varphi + 2MH_z,$$
(8)
$$\frac{2M}{\gamma}(1+\alpha^2)\frac{\partial q}{\partial t} = -4\Delta_0 A \frac{\partial^2\varphi}{\partial z^2} + \sigma_0 \Delta_0 \alpha \frac{\partial^2 q}{\partial z^2} + + 4\pi M^2 \Delta_0 \sin 2\varphi + 2\alpha MH_z.$$

Решение системы уравнений сводится к определению зависимостей $q = q(z, t), \ \psi = \psi(z, t)$. Гранич-

ные условия для q и ψ имеют вид

$$\frac{\partial \psi_{i,j}}{\partial z}\Big|_{z=0,h} = 0, \quad \frac{\partial q_{i,j}}{\partial z}\Big|_{z=0,h} = 0,$$

$$q\Big|_{t=0} = 0, \quad \psi\Big|_{t=0} = 0,$$

$$\frac{\partial \psi_1}{\partial z}\Big|_{z=h_1} = \frac{\partial \psi_2}{\partial z}\Big|_{z=h_1}, \quad \frac{\partial q_1}{\partial z}\Big|_{z=h_1} = \frac{\partial q_2}{\partial z}\Big|_{z=h_1},$$

$$q_1\Big|_{z=h_1} = q_2\Big|_{z=h_1}, \quad \psi_1\Big|_{z=h_1} = \psi_2\Big|_{z=h_1}.$$
(9)

Здесь $h = h_1 + h_2$ — толщина двухслойной пленки, h_i — толщина *i*-го слоя.

Поведение ДС определяется как внутренними параметрами (M, A, K, γ , α), так и внешним магнитным полем H. Выделим область слабых полей ($H \ll H_{W,i}$), область средних полей ($H \approx H_{W,i}$) и область сильных полей ($H \gg H_{W,i}$), где

$$H_{W,i} = 2\pi\alpha_i M_i \tag{10}$$

— пороговое поле Уокера (поле срыва стационарного движения ДС) для *i*-го слоя [7].

Расчет проводили для пленки, параметры слоев которой приведены в таблице, где

$$V_{W,i} = 2\pi\gamma_i M_i \Delta_{0,i} \tag{11}$$

— пороговая скорость Уокера (скорость срыва стационарного движения ДС) для *i*-го слоя [7].

Параметры слоев в двухслойной магнитоодноосной пленке

Параметр	1-й слой	2-й слой
<i>h</i> , мкм	0.1	0.05
4πM, Γc	800	800
Q	200	200
$\Lambda, 10^{-7} \Im^2$ с/рад	0.04	0.1
$\gamma, 10^7 \Im^{-1} c^{-1}$	350	100
H_W, \mathfrak{O}	88	63
<i>V</i> _W , м/с	2500	710

На рис. 2 для H = 30 Э представлена зависимость перемещения профиля ДС q и изменение фазы ψ со временем. Видно, что при t < 0.02 нс протекают некоторые установочные процессы, затухающие в дальнейшем. Для первого слоя (z < 0.1 мкм) значение γ больше, чем для второго (0.1 < z < 0.15), поэтому угол выхода вектора намагниченности при стационарном движении для первого слоя меньше.

Значение угла выхода вектора намагниченности для однослойной пленки определяется как [7]

$$\psi = \frac{1}{2} \arcsin\left(\frac{H}{2\pi\gamma\Delta M}\right). \tag{12}$$

Во втором слое (рис. 2) в силу неразрывности ДС угол выхода вектора намагниченности увеличивается при движения для поддержания единой скорости.

Рис. 2. Зависимость смещения профиля ДС q (вверху) и угла ψ (внизу) от координаты z и времени t для слабого магнитного поля H = 30 Э

Максимальное значение угла ψ достигается на поверхности пленки.

Скорость движения ДС для двухслойной пленки в стационарном случае можно получить из системы уравнений (8) и граничных условий (9):

$$V = \frac{H(M_1h_1 + M_1h_1)}{M_1h_1\alpha_1/(\gamma_1\Delta_1) + M_2h_2\alpha_2/(\gamma_2\Delta_{21})}.$$
 (13)

Область средних полей близка к точке срыва стационарного движения ДС (рис. 3 получен для H = 54 Э). Из рис. 3 видно, что в этом случае движение ДС носит осциллирующий характер, что более заметно на зависимости $\psi(t)$. Осцилляции с периодом T = 0.003 нс обусловлены колебаниями ДС, когда она переходит в новое положение равновесия, так как вращение вектора намагниченности не равномерное ($\partial^2 \psi_{i,j} / \partial t^2 \neq \text{const}$). Осцилляции с периодом T = 0.023 нс обусловлены вращением вектора намагниченности не равномерное ($\partial^2 \psi_{i,j} / \partial t^2 \neq \text{const}$). Осцилляции с периодом T = 0.023 нс обусловлены вращением вектора намагниченности ($\partial \psi_{i,j} / \partial t \neq 0$).

В случае сильных полей (рис. 4 построен для H = 500 Э) осцилляции ДС происходят с более

Рис. 3. Зависимость смещения профиля ДС q (вверху) и угла ψ (внизу) от координаты z и времени t для среднего магнитного поля H = 54 Э

высокой частотой, чем для средних полей, частота вращения вектора намагниченности увеличивается.

Выводы

Таким образом, в настоящей работе путем численного моделирования движения ДС в двухслойной магнитоодноосной пленке под действием постоянного магнитного поля показано:

 движущаяся ДС является искривленной по толщине пленки;

 в слабых полях в обоих слоях устанавливается стационарное движение ДС;

 в средних полях движение ДС нестационарно, причем на временных зависимостях смещения ДС и угла выхода векторов намагниченности из плоскости ДС повторяются участки одинаковой формы.

Литература

1. Бобек Э., Делла-Торре Э. Цилиндрические магнитные домены. М., 1977.

Рис. 4. Зависимость смещения профиля ДС q (вверху) и угла ψ (внизу) от координаты z и времени t для сильного магнитного поля H = 500 Э

- 2. Эшенфельдер А. Физика и техника цилиндрических магнитных доменов. М., 1983.
- Элементы и устройства на цилиндрических магнитных доменах: Справочник / Под ред. Н. Н. Евтихиева, Б. Н. Наумова. М., 1987.
- 4. Звездин А.К., Котов В.А. Магнитооптика тонких пленок. М., 1988.
- 5. Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. М. 1990.
- 6. *Рыбак В.И., Червоненкис А.Я*. Зарубежная электронная техника. 1980. № 4. С. 1.
- 7. Малоземов А., Слонзуски Дж. Доменные стенки в материалах с цилиндрическими магнитными доменами. М., 1982.
- 8. *Раев В.К., Ходенков Г.Е.* Цилиндрические магнитные домены в элементах вычислительной техники. *М.*, 1981.
- 9. Walker L.R. (не опубл.). Процит. Dillon J.F., Jr. Magnetism. Vol. III / Eds. G. T. Rado, H. Shul. N. Y., 1963. P. 450.
- Slonczewski J.C. // J. Appl. Phys. 1973. 44, N 4. P. 1759.

- 11. Грошенко Н.А., Прохоров А.М., Рандошкин В.В. и др. // ФТТ. 1985. **27**, № 6. С. 1712.
- 12. Рандошкин В.В., Васильева Н.В., Сысоев Н.Н. // Наукоемкие технологии. 2004. № 11. С. 44.
- Рандошкин В.В., Дудоров В.Н., Салецкий А.М., Сысоев Н.Н. // Неорганические материалы. 2001. 37, № 10. С. 1266.
- 14. Рандошкин В.В., Васильева Н.В., Сысоев Н.Н. // Вестн. Моск. ун-та. Физ. Астрон. 2005. № 1. С. 35.
- 15. Рандошкин В.В., Сигачев В.Б. // Письма в ЖЭТФ. 1985. **42**, № 1. С. 34.

Поступила в редакцию 16.01.06