УДК 544.232

ПЕРЕХОД СПИРАЛЬ-КЛУБОК В ДНК В ПРИСУТСТВИИ ДЕНАТУРИРУЮЩЕГО АГЕНТА

Е. В. Петровская, В. В. Василевская*), А. Р. Хохлов

(кафедра физики полимеров и кристаллов)

E-mail: vvvas@ineos.ac.ru

Предложена теория перехода спираль-клубок в растворах, содержащих денатурирующий спираль агент. Показано, что если переход спираль-клубок индуцируется увеличением концентрации денатурирующего агента, то ширина конформационного перехода сужается по мере усиления активности агента. Напротив, если переход спираль-клубок индуцируется изменением температуры, то введение денатурирующего агента приводит к снижению резкости перехода спираль-клубок тем более значительному, чем выше активность денатурирующего агента. Результаты расчетов находятся в соответствии с литературными экспериментальными данными.

Введение

Молекула ДНК представляет собой комплекс из двух закрученных относительно друг друга полинуклеотидных цепочек, связанных между собой межмолекулярными силами. При повышении температуры взаимодействия между полинуклеотидными цепочками ослабляются, двойная спираль дестабилизируется и цепочки расходятся. Это явление называется плавлением, денатурацией ДНК, или переходом спираль-клубок. Схематически переход спираль — клубок изображен на рис. 1.

Для нуклеиновых кислот и синтетических полинуклеотидов переход спираль-клубок происходит в определенной узкой температурной зоне, которая зависит от первичной последовательности ДНК и от ионной силы раствора [1, 2]. Кроме того, температуру плавления ДНК можно существенно снизить, если ввести в раствор вещества, обладающие сильными специфическими взаимодействиями с пурин-пиримидиновыми основаниями одиночной ДНК [3–5]. Такие вещества называются денатурирующими спираль агентами. Связываясь с одиночными нуклеотидными цепочками, денатурирующие агенты нарушают специфическую комплементарность цепей ДНК и препятствуют образованию двойной спирали. Денатурирующими двойную спираль агентами являются производные нуклеозидов, наиболее активным из которых является пурин, а также кофеин, инозин, мочевина и фенол. При концентрации 0.3 М пиримидина и уридина температура перехода спираль-клубок снижается на 5° С, тимидина — на 5.5° С, а пурина — на 9° С [3]. Введение в раствор 0.25 М фенола приводит к падению температуры плавления полиадениновой кислоты на 4° С [3].

Если концентрация фенола в водно-солевом растворе, содержащем одиночные макромолекулы ДНК, становится настолько большой, что образуется эмульсия из капель фенола в воде, то одиночные ДНК объединяются в двойные ДНК, т.е. наблюдается обратный переход клубок-спираль, или ренатурация ДНК. Это связано с тем, что вследствие сильных специфических взаимодействий однонитевые ДНК (оДНК) адсорбируются на поверхности капель фенола. Такое концентрирование приводит к значительному росту скорости реакции ренатурации ДНК просто из-за значительного повышения концентрации оДНК в ограниченном объеме [6, 7]. Экспериментально было показано, что если в эмульсии вода-фенол присутствуют комплементарные

Рис. 1. Схематическое изображение перехода спираль-клубок в ДНК: (а) полностью спиральное состояние (низкая температура); (б) частично расплавленное состояние (температура в области перехода); (в) полностью расплавленное состояние с полностью разошедшимися нитями

^{*)} Институт элементоорганических соединений им. А. Н. Несмеянова РАН.

однонитевые молекулы ДНК (оДНК), то именно на поверхности капель фенола, и только там, между ними идет реакция ренатурации [5].

Причиной концентрирования одиночных макромолекул ДНК на поверхности капель эмульсий фенола является амфифильный характер составляющих ее звеньев — гидрофильность сахаро-фосфатного остова и высокое сродство азотистых оснований А, Г, Т и Ц с фенолом вследствие специфических взаимодействий ароматических частей оснований ДНК с ароматическим кольцом фенола. Такое строение приводит к тому, что наиболее выгодным состоянием для звена является размещение на поверхности капель фенола, когда сахаро-фосфатный остов экспонирован в водную фазу, а основания в фазу фенола. Следует отметить, что амфифильными являются не только звенья ДНК, но и звенья многих аминокислотных остатков, формирующих макромолекулы белков.

Такой взгляд на строение мономерных звеньев позволил ввести новую двумерную классификацию аминокислот [8, 9], а также объяснить ряд особенностей поведения белковых макромолекул, в частности растворимость глобулярных белков [10, 11], формирование коллагеноподобных структур [12], причины стабилизации α -спирали [13].

Таким образом, исследование молекул ДНК в растворах, содержащих вещества с сильными специфическими взаимодействиями с азотистыми основаниями ДНК, является весьма важной и актуальной задачей. В настоящей работе в качестве первого шага мы рассмотрим случай, когда раствор ДНК содержит небольшое количество такого вещества. Вследствие специфических взаимодействий с этим веществом энергетический выигрыш спирального состояния растет и происходит плавление ДНК. В следующей статье мы рассмотрим растворы с высоким содержанием денатурирующих агентов, когда вследствие их избытка они образуют капли в водной фазе и конформационный переход спираль-клубок сопровождается адсорбцией и десорбцией макромолекулы на межфазных границах. Модель, принятая нами для расчетов, приведена в следующем разделе. Далее представлены результаты расчетов и их обсуждение.

Модель

Итак, в соответствии с поставленной задачей рассмотрим переход спираль-клубок в макромолекуле, помещенной в раствор, содержащий агент, дестабилизирующий двойную спираль. Предположим, что концентрация φ дестабилизирующего агента и тенденция его сегрегации с водой малы, так что молекулы дестабилизирующего агента не образуют отдельных фаз (капель) в растворе.

Пусть у нас имеется макромолекула, степень полимеризации которой равна *N*. Предположим, что эта макромолекула претерпевает переход спи-

раль-клубок и пусть N_1 ее мономерных звеньев находятся в клубковом состоянии, а остальные N_2 мономерных звена — в спиральном состоянии:

$$N_1 + N_2 = N. (1)$$

Эти звенья неравномерным образом разбросаны вдоль цепи и образуют области, содержащие клубковые и спиральные участки (рис. 1). Обозначим через *n* число однотипных (спиральных или клубковых) областей.

Энергетически клубковое и спиральное состояния различны. Обозначим через f_1 свободную энергию, приходящуюся на одно звено участка цепи, находящегося в клубковом состоянии, а через f_2 соответственно свободную энергию, приходящуюся на одно звено участка цепи, пребывающего в спиральном состоянии. Расплетение двойной спирали приводит к появлению напряжения на контактном спираль-клубок участке, что приводит к росту свободной энергии. Обозначим через F_s проигрыш в свободной энергии, приходящийся на каждый контакт спирального и клубкового участков.

В этих обозначениях свободную энергию *F* макромолекулы можно записать в виде [2, 14]

$$F = N_1 f_1 + N_2 f_2 + nF_s - TS.$$
 (2)

В уравнении (2) первые два слагаемых — это свободные энергии клубкового и спирального состояний, третье — свободная энергия межконтактных взаимодействий клубковых и спиральных участков цепи, четвертое слагаемое описывает энтропийную часть свободной энергии. Энтропия S спиральных и клубковых участков равна сумме логарифмов чисел W_i возможных размещений N_i (i = 1 — клубок; i = 2 — спираль) мономерных звеньев по n клубковым (спиральным) участкам цепи:

$$S = \ln W_1 + \ln W_2, \quad W_i = \frac{N_i!}{n!(N_i - n)!}.$$
 (3)

Добавление дестабилизирующего двойную спираль агента в раствор делает спиральное состояние энергетически менее выгодным. Ясно, что при малых концентрациях φ дестабилизирующего агента зависимость энергии f_2 от концентрации φ может быть аппроксимирована линейной функцией:

$$f_2 = f_{20} + \Delta f \varphi. \tag{4}$$

В уравнении (4) f_{20} — свободная энергия спирального состояния в водном растворе, не содержащем дестабилизирующего агента; а Δf — изменение свободной энергии спирального состояния при добавлении дестабилизирующего агента в раствор.

Уравнения (2)–(4) полностью задают свободную энергию макромолекулы. С учетом выражения (1) и выражения Стирлинга ($\ln N! \sim N \ln N$ при $N \rightarrow \infty$) свободная энергия F может быть представлена как функция двух переменных — числа мономерных звеньев N_1 , приходящихся на участки

цепи в клубковом состоянии, и числа спиральных и клубковых участков *n*.

Равновесные значения N_1 и n определяются минимизацией свободной энергии $F(N_1, n)$ по соответствующим переменным:

$$\left(\frac{\partial F}{\partial N_1}\right)_{n=\text{const}} = 0, \quad \left(\frac{\partial F}{\partial n}\right)_{N_1=\text{const}} = 0.$$
 (5)

После простых вычислений из системы (5) мы получили систему уравнений

$$\frac{1-n/N_2}{1-n/N_1} = e^{(f_1 - f_{02} - \Delta f \varphi)/T} = Se^{-\Delta f \varphi/T},$$

$$\left(\frac{N_1}{n} - 1\right) \left(\frac{N_2}{n} - 1\right) = \frac{1}{\sigma},$$
(6)

где $S = e^{(f_1 - f_{02})/T}$ и $\sigma = e^{-Fs/T}$.

Параметр S характеризует энергетическую выгодность того или иного (спирального или клубкового) состояния в водном растворе, не содержащем дестабилизирующих добавок. Если в водном растворе выгодна спираль, т.е. $f_1 > f_2$, то S > 1; если $f_2 > f_1$, а это означает, что более выгодна клубковая конформация, то S < 1. В общем случае параметр S изменяется в пределах $0 < S < \infty$. Экспериментально параметр S изменяется при изменении температуры — чем ниже величина S, тем выше значение температуры T.

Параметр σ характеризует кооперативность перехода: поскольку $F_s >$, то $\sigma \ll 1$. Чем меньше параметр σ , тем энергетически менее выгодна граница между клубковыми и спиральными участками, что способствует, как мы увидим ниже, увеличению резкости перехода спираль-клубок.

Введем степень спиральности полимерной цепи θ как долю звеньев, входящих в спиральные участки: $\theta = N_2/N$. В новых обозначениях система уравнений (6) может быть переписана как

$$\begin{cases} \left(1 - \frac{n}{N} \frac{1}{\theta}\right) = Se^{-\Delta f \varphi/T} \left(1 - \frac{n}{N} \frac{1}{1 - \theta}\right), \\ \left(1 - \frac{N}{n}\theta\right) \left(1 - \frac{N}{n}(1 - \theta)\right) = \frac{1}{\sigma}. \end{cases}$$
(7)

После простых алгебраических преобразований из (7) можно получить явный вид зависимости степени спиральности θ от концентрации φ дестабилизирующего агента в растворе:

$$\theta(\varphi) = \frac{1}{2} \left(1 - \operatorname{sign}\left(e^{\Delta f \varphi/T} - S\right) \left(1 + \frac{4\sigma S e^{\Delta f \varphi/T}}{(e^{\Delta f \varphi/T} - S)^2} \right)^{-1/2} \right),$$
(8)

где

0()

$$\operatorname{sign}(x) = \begin{cases} 1, & \operatorname{если} x > 0, \\ -1, & \operatorname{если} x < 0, \\ 0, & \operatorname{если} x = 0. \end{cases}$$

Нами были рассчитаны зависимости степени спиральности полимерной цепи θ от концентрации φ денатурирующего агента и от зависящего от температуры системы параметра S при различных значениях σ и Δf .

Результаты и обсуждение

На рис. 2–4 приведены зависимости степени спиральности θ полимерной цепи от концентрации φ денатурирующего агента в растворе, построенные при различных значениях параметров S, σ и Δf .

При S = 3, $\sigma = 0.01$ (рис. 2) в отсутствие денатурирующего агента практически все звенья цепи находятся в спиральном состоянии, и добавление в раствор слабых денатурирующих агентов ($\Delta f = 1$, кривая а) не влияет на состояние цепи. Введение более сильных денатурирующих агентов ($\Delta f = 5$, 10, 50; кривые б-г) приводит к тому, что доля звеньев в спиральном состоянии в падает и происходит переход спираль-клубок. Видно, что чем больше сродство денатурирующего агента с ДНК (чем больше значение Δf), тем более резко и при меньших концентрациях φ денатурирующего агента происходит переход спираль-клубок. В случае очень сильного денатурирующего агента ($\Delta f = 50$, кривая г) переход спираль-клубок происходит при $\varphi = 0.025$, а ширина области перехода составляет несколько сотых объемных долей.

Рис. 2. Зависимость степени спиральности θ от концентрации денатурирующего агента φ при S = 3, $\sigma = 0.01$ и различных значениях $\Delta f : 1$ (*a*), 5 (σ), 10 (σ), 50 (σ)

На рис. З приведены зависимости степени спиральности θ полимерной цепи от концентрации φ денатурирующего агента для S = 3 и большего значения параметра кооперативности $\sigma = 0.1$. Видно, что в этом случае введение денатурирующего агента меньше влияет на состояние полимерной цепи, чем в рассмотренном выше случае с $\sigma = 0.01$. Так, при $\Delta f = 5$, $\sigma = 0.1$ и высоких концентрациях денатурирующего агента ($\varphi = 0.3$) лишь незначительная

Рис. 3. Зависимость степени спиральности θ от концентрации денатурирующего агента φ при S = 3, $\sigma = 0.1$ и различных значениях $\Delta f : 1$ (*a*), 5 (*b*), 10 (*b*), 50 (*c*)

часть (не более 10%) звеньев переходит в клубковое состояние (рис. 3, кривая δ), тогда как в случае ДНК с $\sigma = 0.01$ (рис. 2, кривая δ) при столь высоких концентрациях денатурирующего агента $\varphi = 0.3$, напротив, не более 10% звеньев пребывают в спиральном состоянии. Введение более сильных денатурирующих агентов и в этом случае вызывает переход спираль-клубок (рис. 3, кривые β и β). Однако в целом из сравнения рис. 2 и 3 видно, что чем более энергетически выгодна граница между спиральными и клубковыми участками цепи, тем менее резко и при больших концентрациях φ происходит переход спираль-клубок.

В случаях, представленных на рис. 4, значение параметра σ и силы денатурирующего агента Δf являются фиксированными, а параметр S (характеризующий температуру системы) меняется. При S = 1 в отсутствие денатурирующего агента ($\varphi = 0$) спиральное и клубковое состояния одинаково выгодны и $\theta = 0.5$, т.е. одинаковые количества звеньев

Рис. 4. Зависимость степени спиральности θ от концентрации денатурирующего агента φ при $\sigma = 0.01$, $\Delta f = 10$ и различных значениях S: 1 (a), 3 (б), 10 (в)

находятся в клубковом и спиральном состояниях. Введение денатурирующего агента в такую систему приводит к плавному уменьшению доли θ звеньев в спиральном. При S = 3 и 10 (рис. 4, кривые 6, 6) в отсутствие денатурирующего агента практически все звенья цепи находятся в спиральном состоянии ($\theta \sim 1$), а введение в раствор денатурирующего агента приводит к переходу спираль-клубок, причем чем больше значение параметра S (ниже температура), тем при больших концентрациях денатурирующего агента происходит переход спираль-клубок. Интересно, что значения ширины переходов в обоих случаях приблизительно равны: в области перехода зависимости $\theta(\varphi)$ имеют одинаковый наклон (рис. 4, кривые 6, 6).

Ширину перехода спираль-клубок $\Delta \varphi$ можно легко оценить, если вычислить производную $\frac{\partial \theta}{\partial \varphi}$ в точке, где одинаковые количества звеньев находятся в клубковом и глобулярном состоянии, т.е. $\theta = 1/2$:

$$\Delta \varphi = 1 \Big/ \left(\frac{\partial \theta}{\partial \varphi} \right) \Big|_{\theta = 1/2} = \frac{4T\sqrt{\sigma}}{\Delta f}.$$
 (9)

Таким образом, ширина перехода спираль-клубок, вызванного добавлением денатурирующего агента, тем выше, чем выше параметр кооперативности σ и обратно пропорциональна активности Δf этого денатурирующего агента: чем выше активность Δf денатурирующего агента, тем резче происходит переход спираль-клубок.

На рис. 5 приведены зависимости степени спиральности θ от температуры (параметра S) при $\sigma = 0.01$, фиксированной силе денатурирующего агента $\Delta f = 10$ и трех различных концентрациях φ . Видно, что изменение температуры в системе приводит к переходу спираль-клубок. Введение денатурирующего агента вызывает смещение перехода в область более низких температур. Интересно, что при

Рис. 5. Зависимость степени спиральности θ от параметра S при $\sigma = 0.01$, $\Delta f = 10$ и различных концентрациях φ денатурирующего агента: 10^{-3} (a); 10^{-2} (б); 10^{-1} (в)

небольших концентрациях денатурирующего агента (рис. 5, кривые a и b) ширина перехода (наклон зависимости $\theta(S)$) изменяется слабо. При высоких концентрациях денатурирующего агента (рис. 5, кривая b) переход спираль-клубок наблюдается при существенно более низких температурах и занимает гораздо более широкую область.

Аналогично ширину перехода спираль-клубок в этом случае можно оценить, если определить производную $\left(\frac{\partial\theta}{\partial S}\right)$ при $\theta = 1/2$. Из уравнения (9) ясно, что $\theta = 1/2$ при $S = e^{\Delta f \varphi/T}$ и, таким образом, ширина перехода ΔS равна

$$\Delta S = 1 \left/ \left(\frac{\partial \theta}{\partial S} \right) \right|_{S = e^{\Delta f \varphi/T}} = 4 \sqrt{\sigma} e^{\Delta f \varphi/T}.$$
 (10)

При невысоких концентрациях денатурирующего агента ($\Delta f \varphi/T \ll 1$) для ширины перехода ΔS можно записать:

$$\Delta S \sim 4\sqrt{\sigma} \left(1 + \frac{\Delta f \varphi}{T}\right)$$

Таким образом, в случае когда переход спираль-клубок вызывается изменением температуры системы, его ширина растет по мере увеличения параметра кооперативности σ и введения денатурирующего агента. Чем выше концентрация денатурирующего агента φ и его сила Δf , тем более плавно происходит переход спираль-клубок. При небольших концентрациях φ зависимость ширины ΔS линейным образом зависит от φ , и только при достаточно больших концентрациях φ зависимость $\Delta S(\varphi)$ отклоняется от линейной.

Построенные нами зависимости ширины перехода ΔS спираль-клубок от концентрации φ (рис. 6) подтверждают эти выводы. Видно, что добавление денатурирующего агента увеличивает ширину перехода. Причем чем больше активность денатурирующего агента Δf , тем значительнее растет ширина перехода. Действительно, при добавлении слабого денатурирующего агента, для которого $\Delta f = 1$, величина ΔS практически не меняется. Если $\Delta f = 3$, то при концентрациях $\varphi = 0.3$ ширина перехода увеличивается в 2.5 раза, а при $\Delta f = 5$ и концентрации $\varphi = 0.3$ отношение $\frac{\Delta S(\varphi)}{\Delta S(\varphi=0)}$ равно 4.5.

В статье [3] экспериментально была получена зависимость ширины перехода спираль-клубок ДНК ΔS от концентрации различных денатурирующих агентов φ и показано, что ширина перехода ΔS возрастает с увеличением концентрации и активности денатурирующего агента, причем при малых концентрациях денатурирующего агента эта зависимость линейная. Эти данные полностью согласуются с представленными нами результатами теоретических расчетов.

Рис. б. Зависимость нормированной ширины перехода спираль-клубок от концентрации φ денатурирующего агента при $\sigma = 0.01$ и различных значений $\Delta f: 1$ (*a*); 3 (*б*); 5 (*в*)

Работа выполнена при финансовой поддержке РФФИ (грант 05-03-33077), Программы фундаментальных исследований Отделения химии и наук о материалах Российской академии наук и Благотворительного фонда поддержки российской науки.

Литература

- 1. Веденов А.А., Дыхне А.М., Франк-Каменский М.Д. // УФН. 1971. **105**. С. 479.
- 2. Волькенштейн М.В. Биофизика. М., 1981.
- 3. Paul O.P. Ts'o, Helmkamp G.K., Sander C. // PNAS. 1962. 48. P. 686.
- Levine L., Gordon J.A., Jencks W.P. // Biochemistry. 1963. 2. P. 168.
- Goldar A., Sikorav J.-L. // Eur. Phys. E. 2004. 14, N 3. P. 211.
- Vasilevskaya V.V., Aerov A.A., Khokhlov A.R. // Doklady Phys. Chem. 2004. 398, N 6. P. 258.
- 7. Vasilevskaya V.V., Aerov A.A., Khokhlov A.R. // Polym. Colloid Sci. 2006. **284**, N 5. P. 459.
- Okhapkin I.M., Makhaeva E.E, Khokhlov A.R. // Polym. Colloid Sci. 2005. 284, N 2. P. 117.
- 9. Okhapkin I.M., Askadskii A.A., Markov V.A., Makhaeva E.E., Khokhlov A.R. // Polym. Colloid Sci. 2005 (in print).
- Vasilevskaya V.V., Khalatur P.G., Khokhlov A.R. // Macromolecules. 2003. 36, N 26. P. 10103.
- Vasilevskaya V.V., Klochkov A.A., Lazutin A.A., Khalatur P.G., Khokhlov A.R. // Macromolecules. 2004.
 37, N 14. P. 5444.
- 12. Vasilevskaya V.V., Markov V.A., Khalatur P.G., Khokhlov A.R. // J. Chem. Phys. 2006. N 1. P. 124.
- 13. Ермилов В.А., Василевская В.В., Хохлов А.Р. // Высокомолекулярные соединения. 2007. **49A**. С. 109.
- 14. Гросберг А.Ю., Хохлов А.Р. Статистическая физика макромолекул. М., 1989.

Поступила в редакцию 03.04.06