УДК 541.37:541.1:541.183.03

ИССЛЕДОВАНИЕ ПРОЦЕССОВ СТЕКЛОВАНИЯ ПОВЕРХНОСТНОГО СЛОЯ ПОЛИСТИРОЛА С ПОМОЩЬЮ ЛЮМИНЕСЦЕНТНЫХ МОЛЕКУЛЯРНЫХ ЗОНДОВ

А. В. Зайцева, В. Б. Зайцев, В. М. Рудой*)

(кафедра Общей физики и молекулярной электроники)

E-mail: vzaitsev@phys.msu.ru

С помощью метода флуоресцентной спектроскопии с применением люминесцентных молекулярных зондов определены характерные температурные интервалы, в которых происходит процесс стеклования поверхностного слоя ПС с различной молекулярной массой. Обнаружено, что для всех исследованных молекулярных масс температура стеклования поверхностного слоя ПС значительно понижена по сравнению с объемными значениями. Результаты работы хорошо согласуются с данными, полученными ранее независимым методом.

Введение

Изучению релаксационных процессов и, в частности, процесса стеклования в поверхностных слоях высокомолекулярных соединений, в настоящее время уделяется пристальное внимание, поскольку структура и физическое состояние именно поверхностных слоев определяют адгезионные и фрикционные свойства полимеров, их биосовместимость и т. д. Кроме того, в последнее время все большую актуальность для целей оптоэлектроники и катализа приобретает создание композиционных материалов, в которых упорядоченные ансамбли наночастиц металлов стабилизированы в тонком поверхностном слое стеклообразного полимера. При этом процесс стеклования может играть ключевую роль в создании нанокомпозитов с теми или иными заданными свойствами [1, 2].

В последние годы к изучению процесса стеклования поверхностных слоев полимеров привлекалось большое число экспериментальных и теоретических методов. Однако результаты работ в этой области достаточно противоречивы, что объясняется как чисто экспериментальными трудностями, так и отсутствием единого подхода к описанию процесса стеклования, достаточно глубокого понимания его природы даже для объема полимера. Тем не менее из некоторых работ [3–10] можно заключить, что поверхности многих полимеров на границе с воздухом характеризуются температурами стеклования T'_g , пониженными по сравнению с соответствующими объемными значениями T_g .

Ранее в работе [10] был предложен оригинальный метод исследования структуры и особенностей стеклования поверхностных слоев полимеров, заключающийся в наблюдении с помощью атомно-силовой микроскопии за погружением в полимер наночастиц металла, предварительно адсорбированных на его поверхности из коллоидного раствора, при ступенчатом отжиге системы. При этом на примере полистирола авторам [10] удалось не только показать, что $T'_g < T_g$, но и достаточно точно определить значение T'_g для образцов ПС с молекулярными массами $M_w = 270\,000$, 51000, 9600 (полученных тем же методом и в тех же условиях, что и образцы, использованные в настоящей работе).

В табл. 1 приведены полученные значения T'_g для различных M_w , а также соответствующие объемные значения температуры стеклования T_g .

T		1					1
L	а	0	Л	И	Ц	а	1

Температуры стеклования объема (T_g) и поверхностного слоя (T'_g) полистирола с различной молекулярной массой (M_w) [10]

M_{w}	T_g , K	T'_g , K
270 000	380 ± 3	318 ± 5
51 000	375 ± 3	308 ± 5
9600	365 ± 3	< 293

В настоящей работе для дальнейшего исследования релаксационных процессов в поверхностном слое полистирола был применен оптический метод — так называемый метод люминесцентных молекулярных зондов, уже доказавший свою эффективность при изучении фазовых переходов в тонких полимерных пленках [11, 12]. Суть метода состоит в исследовании характеристик спектров флуоресценции молекул красителя, внедренных в полимер (либо адсорбированных на его поверхности) и связанных с молекулами полимера, как правило, слабыми ван-дер-ваальсовыми силами. При этом параметры спектров флуоресценции фотовозбужденных

^{*)} Институт физической химии РАН, Москва.

молекул красителя (положение максимума, интенсивность, структура спектра, ширина спектральных линий и др.) в значительной мере зависят от состояния их ближайшего окружения, т.е. полимерной матрицы. По сдвигу положения максимума спектра можно судить об изменении локальных электрических полей, в которых находятся молекулы-зонды; уширение спектра флуоресценции дает информацию о степени неоднородности окружения молекул; изменение интенсивности свечения может указать на наличие переноса энергии в системе и т. д.

Методика эксперимента

В работе проведены исследования полистирола (ПС) с молекулярной массой $M_w = 270\,000$, 51 000 и 9600. Пленки ПС были сформированы на поверхности кремниевых пластин методом полива из раствора в толуоле (концентрация раствора 2 мас.%). После нанесения пленок образцы выдерживали на воздухе в течение 1-2 сут и затем отжигали на воздухе при температуре $120 \pm 1 \,^{\circ}$ С в течение 6 ч. Эта процедура позволяла, во-первых, добиться более полного испарения растворителя из пленки и формирования в поверхностном слое структуры, близкой к равновесной, а во-вторых, приготовить образцы с одинаковой термической предысторией, от которой существенно зависят свойства полимера.

В качестве люминесцентных зондов использовались молекулы красителя родамина В. Краситель адсорбировался на поверхность ПС путем помещения образцов в этанольный раствор родамина В (0.4 мг/мл) на 15 мин с последующим высушиванием на воздухе не менее суток. При этом по оценкам, сделанным с помощью пьезорезонансных микровесов [12], на поверхности образуется домонослойное покрытие красителя (менее 0.5 монослоя). Это также подтверждается по виду спектров флуоресценции. Мы считали, что в таких условиях молекулы красителя практически не влияют на свойства полимера.

Для исследования спектров люминесценции использовался автоматизированный спектрофлуориметр, собранный на базе монохроматора МДР-12 и двойного монохроматора МДР-6 и работающий в режиме счета фотонов. Возбуждение люминесценции производилось ксеноновой лампой ДКСэЛ-1000 на длине волны 515 нм. Спектрофлуориметр был снабжен термоприставкой. Точность задания длины волны была не хуже ±0.5 нм. Температура образца во время измерения поддерживалась с точностью ±0.5 К.

Результаты и их обсуждение

Характерный спектр флуоресценции молекул родамина В на поверхности ПС представлен на рис. 1. Как видно из рисунка, в спектре можно различить две полосы: максимум в районе 580 нм соответствует свечению мономеров родамина В, пик на 640 нм

Рис. 1. Характерный вид спектра люминесценции молекул родамина В, адсорбированных на полистироле: 1 — полоса мономеров, 2 — полоса димеров. Слева — спад линии возбуждения

(пунктирная кривая) — излучению ассоциатов. Последний появляется в спектре только в случае димеризации молекул родамина В или образования ими более сложных ассоциатов. Заметим, что непосредственно после нанесения родамина В на поверхность ПС в спектре наблюдалась только коротковолновая полоса; это означает, что при использованных нами концентрациях красителя димеры в результате адсорбции не образовывались.

Мы исследовали температурные зависимости формы спектров флуоресценции адсорбированных молекул родамина В на поверхности ПС с различной молекулярной массой ($M_w = 270\,000$, 51 000 и 9600) в интервале 297-348 К (т.е. при температурах существенно более низких, чем «объемные» температуры стеклования T_g всех исследованных образцов ПС — см. табл. 1). Нами был проведен анализ температурных зависимостей ширины спектральной линии мономеров родамина В на полувысоте, $\Delta \lambda_{1/2}$. На рис. 2 представлены зависимости $\Delta\lambda_{1/2}(T)$ для трех значений молекулярной массы М_w полистирола. Как видно из рисунка, в случаях $M_w = 270\,000$ и $M_w = 51\,000$ наблюдается максимум ширины линии в диапазонах температур 309-319 и 302-312 К соответственно.

Согласно известной модели (см., напр., [13]) формирования электронно-колебательных спектров, форма диффузной полосы спектра удовлетворительно описывается формулой типа $I(\nu) =$ $= \int A(\nu, \omega)B(\nu, \omega) d\omega$, где $A(\nu, \omega) - функция,$ отвечающая за однородную составляющую спектра, а $B(\nu, \omega) - функция,$ описывающая неоднородное уширение. Если в состав спектра входит несколько колебательных полос, то величина $I(\nu)$ представляется суммой соответствующих интегралов по полосам. Величина однородного уширения спектральной линии имеет монотонную степенную зависимость от температуры вида $\approx T^k$, где $k = 2 \div 3$. Из анализа экспериментальных данных работы [13] следует, что

Рис. 2. Температурные зависимости ширины спектральной линии мономеров родамина В на полувысоте для трех значений молекулярной массы полистирола: $M_w = 270\,000$ (1), 51 000 (2), 9600 (3)

для родамина в исследованном диапазоне температур величина однородной составляющей спектра должна плавно расти не более чем на 3 нм.

В нашем случае, как видно из рис. 2, зависимость ширины спектра от температуры для ПС с $M_w = 270\,000$ и 51000 носит сложный характер: сначала ширина линии растет, достигая максимума при температурах 314 ± 5 К (для $M_w = 270\,000$) и 307 ± 5 К (для $M_w = 51\,000$), затем ширина линии уменьшается. Это означает, что температурные зависимости ширины спектров флуоресценции молекул-зондов на ПС ($M_w = 270\,000$ и 51000) в основном определяются неоднородным уширением, возникающим из-за разброса условий, в которых находятся различные молекулы красителя в момент излучения ими кванта света.

Известно, что на неоднородное уширение влияет степень взаимной перестройки молекулы-зонда и ее окружения в момент излучения [14, 15]. Однако в этом случае увеличение неоднородного уширения должно сопровождаться наличием немонотонной, S-образной зависимости положения максимума λ_m спектра флуоресценции от температуры [15], которая в нашем случае не наблюдалась. Кроме того, известно, что для молекул родаминов соответствующий температурный диапазон, как правило, на 100–150 К ниже использованного нами [16]. Следовательно, этим эффектом нельзя объяснить наблюдавшиеся нами экспериментальные зависимости.

Интересно отметить, что выше температуры ≈ 323 К (для $M_w = 51000$) и 333-343 К ($M_w = 270000$) неоднородная составляющая ширины линий возвращается к своему значению при 293 К (с учетом изменения однородного уширения). Такой ход температурных зависимостей ширины спектров может объясняться наличием в исследуемом температурном диапазоне значительных структурных перестроек в поверхностном слое полимера [11, 12, 17]. Как видно из сравнения табл. 1 и рис. 2, температуры стеклования тонкого поверхностного слоя ПС с $M_w = 270\,000$ и 51000 достаточно точно совпадают с температурными областями, где неоднородное уширение спектральных линий люминесценции родамина В имеет максимум. Поэтому мы считаем, что обнаруженные нами изменения в спектрах соответствуют процессам стеклования в поверхностном слое ПС.

Как известно, величина неоднородного уширения спектра флуоресценции молекулы-зонда определяется гетерогенностью (геометрической, зарядовой и химической) поверхностного слоя [17]. В конечном счете оно связано с разбросом локальных полей, в которых зонды находятся в момент испускания кванта света. Максимум неоднородного уширения в области стеклования (для ПС с $M_w = 270\,000$ и 51 000) и соответственно максимум гетерогенности поверхностного слоя ПС в этой области можно объяснить неодинаковой степенью завершенности релаксационного перехода в разных точках на поверхности.

В случае ПС с M_w =9600 ситуация несколько иная: так как его T'_g (см. табл. 1) ниже комнатной температуры (по данным работы [6], она меньше 273 К), то в исследуемом температурном диапазоне поверхностный слой полимера уже находится в расстеклованном состоянии и, по-видимому, не претерпевает существенных структурных перестроек в ходе нагрева. Как видно из рис. 2, ширина спектральной линии молекулы-зонда монотонно увеличивается с ростом температуры. Это увеличение незначительно (≈ 2 нм в диапазоне от 300 до 348 К) и в основном объясняется, по-видимому, ростом однородного уширения спектра.

Необходимо отметить, что вся температурная зависимость ширины линии флуоресценции родамина В на ПС с $M_w = 9600$ лежит значительно ниже соответствующих кривых для $M_w = 270\,000$ и 51000. Данное обстоятельство можно объяснить более однородной (равновесной) структурой поверхностного слоя низкомолекулярного ПС, содержащего значительно более короткие полимерные цепи и находящегося в расстеклованном состоянии.

В табл. 2 приведены полученные нами значения температур, при которых наблюдается максимум неоднородного уширения спектра флуоресценции использованного нами люминесцентного зонда.

Таблица 2

Температуры *Т* наблюдения максимума неоднородного уширения в спектре флуоресценции молекулярного зонда на поверхности полистирола с различной молекулярной массой (*M*_w)

M_w	Т, К
270 000	314 ± 5
51 000	307 ± 5
9600	—

Сравнивая табл. 1 и 2, легко убедиться, что эти диапазоны соответствуют значениям температур стеклования поверхностного слоя полистирола.

Заключение

Таким образом, нами продемонстрирована высокая чувствительность метода люминесцентных молекулярных зондов к релаксационным переходам в поверхностном слое полимеров. Этим методом показано, что стеклование в поверхностном слое ПС происходит при температурах существенно более низких, чем в объеме полимера. Определены характерные температурные интервалы, в которых происходят значительные структурные перестройки в поверхностном слое полимеров с различной молекулярной массой. Полученные результаты нужно учитывать при использовании поверхностных слоев полимеров и тонких полимерных пленок. Эти данные необходимы для управления процессами стеклования с целью создания полимеров с заданными функциональными свойствами поверхности, а также для создания поверхностных двумерных нанокомпозитов.

В следующей публикации мы рассмотрим влияние процесса стеклования поверхностного слоя полистирола на подвижность в нем молекул-зондов и их димеризацию.

Авторы выражают большую благодарность О.В. Дементьевой и М.Е. Карцевой за приготовление образцов полистирола.

Литература

1. Дементьева О.В., Карцева М.Е., Зайцева А.В. и др. // Структура и динамика молекулярных систем. Казань, 2002. С. 165.

- 2. Zaitseva A.V, Rudoy V.M., Dementeva O.V., Kartseva M.E. // Materials Science. 2002. 20, N 3. P. 37.
- Meyers G.F., DeKoven B.M., Seitz J.T. // Langmuir. 1992. 8. P. 2330.
- Kajiyama T., Tanaka K., Takahara A. // Polymer. 1998. 39. P. 4665.
- Tanaka K., Jiang X., Nakamura K. et al. // Macromolecules. 1998. 31. P. 5148.
- Satomi N., Takahara A., Kajiyama T. // Macromolecules. 1999. 32. P. 4474.
- 7. Kajiyama T., Satomi N., Tanaka K., Takahara A. // Macromol. Symp. 1999. 143. P. 141.
- Zhang X., Tasaka S., Inagaki N. // J. Polym. Sci. B: Polym. Phys. 2000. 38. P. 654.
- Rouse J.H., Twaddle P.L., Ferguson G.S. // Macromolecules. 1999. 32. P. 1665.
- 10. *Рудой В.М., Дементьева О.В., Яминский И.В.* и др. // Коллоид. Журнал. 2002. № 6. С. 235.
- 11. Зайцев В.Б., Пестова С.А., Плотников Г.С. // Поверхность. 2001. № 11. С. 53.
- 12. Зайцев В.Б., Плотников Г.С., Руднева С.А. // Химическая физика. 2003. **22**, № 3. С. 113.
- 13. *Бойцов В.М., Южаков В.И.* // Оптика и спектроскопия. 1986. **61**, № 5. С. 966.
- 14. Бахшиев Н.Г. // Спектроскопия межмолекулярных взаимодействий. Л., 1972.
- 15. *Левшин Л.В., Салецкий А.М.* // Оптические методы исследования молекулярных систем. Ч. 1: Молекулярная спектроскопия. М., 1994.
- 16. Левшин Л.В., Салецкий А.М. // Лазеры на основе сложных органических соединений. М., 1992.
- 17. Zaitsev V.B., Nevzorov A.N., Plotnikov G.S. // Materials Science. 2002. 20, N 3. P. 57.

Поступила в редакцию 10.04.06