УДК 537.876

НАПРАВЛЕННОСТЬ МНОГОДИПОЛЬНЫХ АНТЕНН В СИСТЕМАХ МИКРОВОЛНОВОЙ ПЕРЕДАЧИ ЭНЕРГИИ

Ян Чунь, В. Л. Саввин

(кафедра радиофизики) E-mail: savvin@phys.msu.ru

Проведен расчет приемных характеристик многодипольных антенн в составе ректенных преобразователей в системах микроволновой передачи энергии. Изучено влияние числа, взаимного расположения и возможных отказов дипольных элементов на диаграмму направленности антенны.

Введение

Развитие работ в области СВЧ-энергетики создали основу для реализации высокоэффективных систем беспроводной передачи энергии для наземных и космических применений [1].

В качестве передающих систем беспроводных (микроволновых) линий передачи энергии часто рассматриваются антенные решетки, образованные системой дипольных излучателей. В приемных системах в качестве приемно-преобразующего элемента рассматривается ректенна, содержащая дипольную антенну и полупроводниковый диод с барьером Шоттки. Максимальная эффективность преобразования микроволн ректенной (до 90%) достигается в оптимальных режимах (1-2 Вт/диод), близких к предельным для современных СВЧ-диодов Шоттки. Подобный режим предполагается реализовать в крупномасштабных проектах космической энергетики [2], где проектная плотность мощности падающего излучения в центре приемной апертуры наземного комплекса достигает 230 Вт/м². При оптимизированной плотности диполей (150 диполей/м² для частоты 2.45 ГГц) нагрузка на один ректенный элемент будет близка к оптимальной.

Однако вдоль радиуса наземного комплекса плотность мощности падающего излучения заметно уменьшается (до -10 дБ) и на краю апертуры составляет 23 Вт/м². Это может вызвать существенное снижение эффективности преобразования при использовании однотипных ректенн на всей апертуре наземного комплекса. Эта же проблема возникает и в проектах наземной микроволновой передачи энергии, которые по соображениям экологической безопасности рассчитаны на еще более низкий уровень плотности мощности: 30 Вт/м² в центре и 3 Вт/м² на краю комплекса [3, 4]. Несоответствие уровня мощности микроволн, приходящейся на один диод, с оптимальным режимом его работы здесь проявляется еще резче.

Одним из решений этой проблемы может быть соединение нескольких диполей в антенный эле-

мент, нагруженный на один СВЧ-диод, при сохранении оптимальной плотности диполей. Применение подобных многодипольных (до 20 диполей) антенных элементов целесообразно и для наземных линий передачи с более низким уровнем плотности мощности микроволнового излучения.

Однако диаграмма направленности многодипольных антенных элементов может заметно отличаться от диаграммы направленности полуволновой дипольной антенны, используемой в обычных ректеннах. Это обстоятельство может существенно отразиться на общих энергетических характеристиках микроволновых линий передачи и требует дополнительного исследования. Кроме того, необходимо учитывать влияние ряда других факторов: числа диполей в антенном элементе, их конфигурации и взаимного расположения, отказа отдельных диполей в системах и т.п. Развитые в последние годы конечно-разностные методы моделирования электродинамических задач на базе прямого решения уравнений Максвелла дают возможность изучить эту проблему.

1. Метод расчета многодипольных антенн

Для анализа характеристик многодипольных антенных элементов использован метод, основанный на дискретизации интегральной формы уравнений Максвелла в пространственно-временном представлении [5, 6]:

$$\oint_{\partial A} \boldsymbol{E} \, d\boldsymbol{s} = -\int_{A} \frac{\partial \boldsymbol{B}}{\partial t} \, d\boldsymbol{A},\tag{1}$$

$$\oint_{\partial A} \boldsymbol{H} \, d\boldsymbol{s} = \int_{A} \left(\frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{J} \right) \, d\boldsymbol{A}, \tag{2}$$

$$\oint_{\partial V} \boldsymbol{D} \, d\boldsymbol{A} = \int_{V} \rho \, dV, \tag{3}$$

$$\oint_{\partial V} \boldsymbol{B} \, d\boldsymbol{A} = 0, \tag{4}$$

где $E(r,t) = E(r)e^{j\omega t}$, $H(r,t) = H(r)e^{j\omega t}$, $D(r,t) = D(r)e^{j\omega t}$, $B(r,t) = B(r)e^{j\omega t}$ — векторы напряженности и индукции электрического и магнитного полей, V и A — объем области и ее поверхность соответственно.

Для численного решения уравнений (1)-(4) область V разбивается на множество ячеек (сетку), ортогонально к этой первичной сетке создается вторичная сетка ячеек. Причем распределение компонент электрической напряженности e и магнитной индукции b локализованы на первичной сетке, а распределение компонент магнитной напряженности h и электрической индукции d — на вторичной сетке.

С учетом закона Фарадея интеграл по контуру в левой части уравнения (1) может быть записан с достаточной точностью как сумма четырех напряжений *е* в узлах сетки, а производная магнитной индукции по времени, рассчитанная на первичной сетке, представляет собой подынтегральное выражение в правой части уравнения:

$$e_i + e_j - e_k - e_l = -\frac{\partial}{\partial t} b_n.$$
 (5)

Повторяя эту процедуру для всех доступных ячеек первичной сетки, схема вычислений уравнения (1) может быть представлена в матричной формулировке:

$$Ce = -\frac{d}{dt}b,$$
 (6)

где *С* — дискретный матричный оператор, состоящий из элементов 0, 1 и — 1.

Аналогично можно получить матричную формулировку уравнения (2) для вторичной сетки:

$$\tilde{C}h = \frac{d}{dt}d + j, \tag{7}$$

где \tilde{C} — аналогичный дискретный матричный оператор.

Для дискретизации уравнений (3) и (4) удобно ввести дискретные операторы дивергенции S и \tilde{S} , относящиеся к первичной и вторичной сеткам соответственно:

$$\tilde{S}d = q, \tag{8}$$

$$Sb = 0. (9)$$

Наконец, соотношения между напряженностью электрических и магнитных полей и значениями их электрической и магнитной индукции дают возможность приравнять их интегральные значения на гранях ячеек. Результирующие коэффициенты, зависящие от усредненных материальных параметров и от пространственного разрешения сетки, могут быть объединены в соответствующие матрицы M_{ε} , M_{μ} и M_{σ} :

$$d = M_{\varepsilon} e, \tag{10}$$

$$b = M_{\mu}h, \tag{11}$$

$$T = M_{\sigma}e + j_s. \tag{12}$$

Таким образом, могут быть получены все матричные уравнения (6)-(12) для решения электромагнитных полевых задач на дискретном сеточном пространстве.

Начальные и граничные условия в рассматриваемой сеточной области задаются исходя из конкретной конструкции многодипольных антенн.

В процессе расчетов вычислялись значения направленности многодипольных антенн $K(\theta) = 4\pi P_{\theta} P_0^{-1}$ и эффективности приема излучения Eff = $(P_0 - P_p) P_0^{-1}$, где P_0 и P_{θ} — полная мощность и мощность излучения из единичного угла, P_p — мощность потерь излучения в многодипольной антенне.

2. Результаты расчета

Исследовано два типа дипольных антенных решеток с различным числом элементов, предназначенных для работы в ректенных преобразователях на частоте 2.45 ГГц. Изучались свойства многодипольных антенн с «треугольным» расположением диполей (рис. 1, a) и с «прямоугольным» расположением диполей (рис. 1, б).

Рис. 1. Схемы расположения диполей в «треугольной» (а) и «прямоугольной» (б) многодипольной антенне. Δ — размер выступающей части отражающей проводящей поверхности; 1, 2, 3, 4 — номера столбцов диполей в решетке

В «треугольных» антенных решетках, содержавших 5 и 18 элементов (рис. 1, *a*), диполи расположены в вершинах равностороннего треугольника на расстоянии 0.64 λ . В «прямоугольных» антенных решетках, содержавших 9 и 16 элементов (рис. 1, *б*), горизонтальное расстояние между диполями равнялось 0.75 λ . Вертикальное расстояние между рядами диполей выбиралось равным 0.25 λ . При этом предполагалось, что отдельные диполи в многодипольных антенных элементах соединены между собой микрополосковыми линиями так, что принятое ими излучение в случае его нормального падения на элемент суммируется синфазно^{*)}.

^{*)} Расчет параметров соединительных микрополосковых линий представляет собой вполне решаемую техническую проблему и не входит в задачи настоящей работы.

Под дипольной антенной решеткой на расстоянии 0.25λ помещен металлический отражатель для улучшения эффективности работы ректенного преобразователя.

Исследовано влияние выступающей части Δ отражающей проводящей поверхности за внешний контур дипольных антенн на уровень усиления многодипольной антенной решетки (рис. 2). Расчеты показали, что при размере выступающей части, превышающем значение 2λ , значения фронтальной и тыльной направленности системы практически не изменяются при изменении размера выступающей части Δ отражателя, уровень боковых лепестков диаграммы направленности при этом изменяется также незначительно. Поэтому целесообразно ограничить размер выступающей части и в дальнейших расчетах применялось условие $\Delta = 2\lambda$.

Рис. 2. Зависимость фронтальной (кривая 1) и тыльной (кривая 2) направленности пятиэлементной дипольной решетки с «треугольным» расположением диполей (см. вариант *a* на рис. 1) от размера выступающей части Δ отражающей проводящей поверхности

Для изучения влияния числа и взаимного расположения диполей рассчитывались диаграммы направленности указанных выше дипольных решеток в условиях нормального и наклонного падения микроволнового излучения на плоскость ректенны.

На рис. З и 4 показаны диаграммы направленности антенных решеток в плоскости $\phi = 90^{\circ}$ и $\phi = 0^{\circ}$ относительно диполей для нормального падения микроволнового излучения.

При увеличении числа диполей направленность многодипольной антенны преобразователя растет и достигает уровня 19 дБ для «треугольной» решетки с 18 диполями. Эффективность антенных решеток с «треугольным» расположением диполей заметно выше, чем эффективность решеток с «прямоугольным» расположением диполей.

Одновременно увеличение числа диполей приводит к заметному сужению ширины диаграммы направленности: до 18° в плоскости $\phi = 90^\circ$ и до 20° в плоскости $\phi = 0^\circ$ для «треугольной» решетки с 18 диполями. В случае одиночной дипольной

Рис. 3. Диаграмма направленности дипольных антенных решеток в плоскости $\phi = 90^{\circ}$ для нормального падения микроволнового излучения. 1 одиночный диполь, 2 — решетка из 5 диполей, 3 решетка из 9 диполей, 4 — решетка из 16 диполей, 5 — решетка из 18 диполей

Рис. 4. Диаграмма направленности дипольных антенных решеток в плоскости $\phi = 0^{\circ}$ для нормального падения микроволнового излучения. 1 одиночный диполь, 2 — решетка из 5 диполей, 3 решетка из 9 диполей, 4 — решетка из 16 диполей, 5 — решетка из 18 диполей

антенны ширина диаграммы направленности превышает 120° в плоскости $\phi = 90°$ и 80° в плоскости $\phi = 0°$. Отметим, что диаграммы направленности в плоскости $\phi = 90°$ у решеток с «прямоугольным» расположением заметно шире диаграмм направленности «треугольных» решеток. Однако в плоскости $\phi = 0°$ их диаграммы весьма узки — 14–20° для рассчитанных вариантов. В случае решеток с «треугольным» расположением диполей все наоборот: в плоскости $\phi = 90°$ их диаграммы шире, чем в плоскости $\phi = 90°$. С увеличением числа диполей эта разница нивелируется (табл. 1).

При наклонном падении микроволнового излучения на многодипольную антенную решетку ее диаграмма направленности становится несимметричной (рис. 5). Максимум диаграммы смещается

	Таолица Т						
	Многодипольный ректенный преобразователь						
Конфигурация	«треуг	ольная»	«прямоугольная»				
Число диполей	5	18	9	16			
Эффективность	0.98	0.97	0.86	0.84			
Направленность, дБ	13.7	19.1	13.9	16.4			
Ширина диаграммы в плоскости $\phi = 90^{\circ}$ в плоскости $\phi = 0^{\circ}$	$\begin{array}{c} 22\\ 42 \end{array}$	18 20	62 20	46 14			

Рис. 5. Диаграмма направленности в плоскости φ = 0° для «треугольной» антенной решетки с 18 диполями при наклонном падения микроволнового излучения: 1 — нормальное падение, 2 угол падения 75°, 3 — угол падения 30°

навстречу падающему излучению, уровень основного максимума плавно уменьшается в отличие от изменений в уровне боковых лепестков. При угле падения 30° уровень задних лепестков достигает 10 дБ и оказывается лишь на 6 дБ ниже уровня основного максимума.

3. Влияние отказов диполей

Изучено влияние возможных отказов различных столбцов диполей в «треугольной» решетке с 18 элементами на форму и симметрию диаграммы направленности. Как показали результаты расчетов (табл. 2), отказ боковых столбцов № 2, 3, 4 (см. рис. 1) может вызвать лишь незначительное уменьшение направленности решетки (на 1-2 дБ) и расширение основного лепестка (на 10–20%) в плоскостях $\phi = 90^{\circ}$ и $\phi = 0^{\circ}$. При этом форма диаграммы направленности становится слегка несимметричной. Отказ центрального столбца диполей № 1 (см. рис. 1) не нарушает симметрии диаграммы направленности и лишь незначительно уменьшает ее величину.

Для решеток с меньшим числом диполей влияние подобных отказов становится более заметным.

Выводы

Применение многодипольных антенн в ректенных элементах наиболее целесообразно для наземных линий микроволновой передачи энергии с экологически безопасным уровнем плотности мощности микроволнового излучения. Число диполей в отдельном ректенном элементе может варьироваться от пяти в центре приемного комплекса до двадцати на его краю. В этом случае режим работы выпрямляющего диода в ректенном элементе будет близок к оптимальному.

«Треугольное» расположение диполей является более эффективным и обладает большей направленностью по сравнению с «прямоугольной» конфигурацией. Возможные отказы отдельных столбцов диполей в рассмотренных вариантах многодипольных антенн могут вызвать незначительное уменьшение направленности решетки (на 1–2 дБ) и расширение основного лепестка (на 10–20%).

При разработке практических наземных систем микроволновой передачи энергии необходимо учитывать, что диаграмма направленности многодипольных антенн будет заметно отличаться от диаграммы направленности одиночного дипольного элемента. Уменьшение ширины диаграммы направленности в 4–5 раз потребует более тщательного

Таблица 2

Конфигурация	«треугольная», 18 диполей					
Отказы диполей	нет	столбец 1	столбец 2	столбец З	столбец 4	
Направленность, дБ	19.1	18.1	17.9	18.2	17.8	
Ширина диаграммы в плоскости $\phi = 90^{\circ}$ в плоскости $\phi = 0^{\circ}$	18 20	19.2 21.6	$\begin{array}{c} 20.2\\ 22.5 \end{array}$	$\begin{array}{c} 19.3\\ 21.7\end{array}$	$\begin{array}{c} 20.3\\ 22.4\end{array}$	

Влияние отказов в многодипольной антенне

позиционирования и юстировки передающих и при-емных систем.

Литература

- 1. Диденко А.Н. СВЧ-энергетика: теория и практика. М., 2003.
- 2. Andryczuk R., Foldes P., Chestek J., Kaupang B. // IEEE Spectrum. 1979. 16, N 7. P. 51.
- 3. Chang Kuang Sang L., Celeste A., Pignolet G., Lan Sun Luk J.D. // J. of Space Power. 2002. N 12. P. 53.
- 4. Celeste A., Jeanty P., Pignolet G. // Acta Astronautica. 2004. 54, N 4. P. 253.
- 5. Weiland T. // Electronics and Communication (AEU). 1977. **31**. P. 116.
- Weiland T. // Int. J. of Numerical Modelling. 1996. 9. P. 295.

Поступила в редакцию 28.08.06