АСТРОНОМИЯ

УДК 551.590.21

ВЛИЯНИЕ ПЫЛИ КОСМИЧЕСКОГО ПРОИСХОЖДЕНИЯ НА ОБЛАЧНОСТЬ, АЛЬБЕДО И КЛИМАТ ЗЕМЛИ

В. И. Ермаков^{*)}, В. П. Охлопков, Ю. И. Стожков^{**)} (НИИЯФ)

E-mail: okhlopkov@taspd.sinp.msu.ru

Обсуждается влияние поступающей из космоса в атмосферу пыли на облачность, альбедо и климат Земли. Показано, что с этой пылью можно связать происходившие недавно и в далеком прошлом изменения климата. Дан прогноз о похолодании климата Земли в первой половине XXI века. Он сделан на основе результатов спектрального анализа температурных данных глобальной сети метеорологических станций за период 1880-2006 гг. с использованием информации о движении планет, которые контролируют поступление пыли из космоса в атмосферу Земли.

Введение

В последнее время широко обсуждается произошедшее в XX в. потепление климата Земли приблизительно на 1°С [1].

Настоящая работа посвящена анализу возможных причин изменения климата с целью объяснить произошедшее потепление климата и дать обоснованный прогноз его изменений в ближайшем будущем.

Изменения климата в прошлом

О том, как изменялся климат в последние 127 лет (период 1880–2006 гг.), имеются данные прямых наблюдений за температурой воздуха у поверхности Земли T_p , которые получены на глобальной сети метеорологических станций. Среднемесячные значения глобальной температуры T_p с 1880 г. по настоящее время опубликованы в [2]. Среднегодовые значения T_p представлены на рис. 1, *a*, из которого видно, что за указанный период произошло потепление климата приблизительно на 1°С.

На рис. 1, δ показано, как изменялась температура воздуха T_p на ст. Восток в Антарктиде (нижняя кривая) в последние 420 тыс. лет [3]. Эти данные получены в результате изотопного анализа концентраций атомов О и Н в ледовых кернах скважины, пробуренной на глубину 3300 м. Из рисунка видно, что изменения температуры достигали шести и более градусов. Имеются также аналогичные данные изотопного анализа ледовых кернов из скважин, пробуренных в Гренландии, которые охватывают последние 100 тыс. лет [4].

В свою очередь на рис. 1, в показано, как изменялась температура воздуха в последние 520 млн лет [5]. Для ее определения были использованы палеоклиматические данные. При сменах климата изменения температуры были более 5°С.

Как видно из рис. 1, *а*-*в*, климат Земли изменялся не только в XX в., но и в более далекие времена.

Антропогенное влияние на климат

Климатическая система Земли включает в себя атмосферу, Мировой океан и литосферу. Главным источником энергии, питающим климатическую систему, является Солнце.

По имеющимся оценкам, из-за антропогенного влияния на климат, которое связано с выбросами в атмосферу парниковых газов, за последние примерно 100 лет поток поступающей в климатическую систему энергии от Солнца возрос менее чем на 2.5 Вт/м² [1, 6]. Этого увеличения недостаточно для объяснения произошедшего в XX в. потепления климата. Антропогенной деятельностью также нельзя объяснить «тонкую» структуру произошедшего в XX в. потепления климата. Как видно из рис. 1, *a*, в период 1880-2006 гг. потепление климата происходило не монотонно. В интервалах времени 1880-1910 и 1945-1975 гг. наблюдались похолодания, а в интервалы 1910-1945 и 1975-1998 гг. наблюдались потепления. Такие изменения климата трудно объяснить антропогенным влиянием, потому что в течение всего рассматриваемого периода антропогенное воздействие непрерывно возрастало.

Влияние солнечной активности на климат Земли

Главным параметром, от которого зависит климат Земли, является поток радиации, приходящий

^{*)} Центральная аэрологическая обсерватория Росгидромета, г. Долгопрудный, Московской обл.

^{**)} Физический институт им. П. Н. Лебедева РАН, Москва.

Рис. 1. Изменения глобальной приземной температуры воздуха, происходившие в последние 127 лет (а); изменения концентрации пыли и температуры воздуха на антарктической станции Восток за последние 420 тыс. лет [3] (б); изменения приземной температуры воздуха по палеоклиматическим данным за последние 520 млн лет [5] (в)

к Земле от Солнца. Его характеризует солнечная постоянная S. Точные измерения S проводятся со спутников, начиная с 1978 г. по настоящее время. Зависимость S за промежуток времени 1978–2002 гг. приведена на рис. 2 [7]. Из рисунка видно, что в 11-летних циклах, когда солнечная активность (числа Вольфа) менялась от своих максимальных значений до минимальных, вариации Sбыли около 1 Вт/м², или менее 0.1%. В соответствии с уравнением энергетического (теплового) баланса климатической системы Земли [8] этим вариациям S соответствуют изменения глобальной температуры Земли менее 0.05° С.

В [9] опубликованы вероятные вариации солнечной радиации за период 1700-1992 гг. В соответ-

ствии с этими данными в течение XX в. указанные вариации не превышали З Вт/м², а их временной ход не совпадал с ходом глобальной температуры Земли за указанный промежуток времени.

Таким образом, произошедшее в XX в. потепление климата Земли нельзя объяснить не только антропогенным, но и прямым влиянием солнечной активности на климатическую систему Земли.

Влияние альбедо климатической системы на климат

Достаточно большая часть приходящей к Земле от Солнца радиации отражается климатической системой обратно в космос и поэтому не участвует в ее нагреве. Чем больше отражательная способность

климатической системы (альбедо), тем холоднее климат.

В работе [6] приведены графические зависимости, показывающие каким образом изменялись глобальное облачное покрытие и альбедо Земли в период с 1985 по 2004 г. С 1985 до 2000 г. происходило постепенное уменьшение облачного покрытия и альбедо Земли. С 2000 г. начался небольшой рост как облачного покрытия, так и альбедо. За период с 1985 по 2000 г. величина потока солнечной энергии, отраженной от Земли, уменьшилась на 7-8 Вт/м².

На рис. З представлены среднегодовые значения глобальной температуры T_p , с которыми совмещены среднегодовые значения величины отраженной солнечной радиации, взятые из работы [6]. Этот

Рис. 3. Изменения глобальной приземной температуры (черные точки) и величины отраженной солнечной радиации [8]

рисунок показывает, что происходившее потепление климата в течение 1985–2004 гг. можно связать с имевшими место в то время вариациями отраженной от Земли солнечной радиации. Из него видно, что потепление климата приблизительно на 1°С могло произойти из-за уменьшения потока отраженной солнечной радиации на 14–16 Вт/м². Соответствующее антропогенному влиянию увеличение потока радиации в климатической системе на величину менее 2.5 Вт/м² составляет приблизительно 17% от величины 15 Вт/м². Это значит, что вклад антропогенной деятельности в произошедшее потепление в XX в. менее 17% (или менее 0.17°С).

Из вышеизложенного следует, что происходившие изменения климата можно связать с изменением альбедо климатической системы Земли, так как между ними обнаруживается подтверждаемая наблюдениями связь.

Влияние пыли космического происхождения на облачность, альбедо и климат Земли

Наиболее эффективно видимый солнечный свет рассеивают (и соответственно отражают обратно в космос) частицы атмосферного аэрозоля с радиусом r > 0.1 мкм. В основном это капельки и кристаллы льда, из которых состоят облака и туманы. Кроме них в атмосфере присутствует большое количество твердого микродисперсного аэрозоля (так называемые ядра Айткена) или частиц пыли с радиусами r_a < 0.1 мкм. Сами эти частицы в видимом свете практически невидимы, так как они незначительно рассеивают этот свет. В то же время они являются центрами конденсации водяного пара, на которых образуются обычные капли, хорошо рассеивающие видимый свет. По этой причине микродисперсная пыль (или частицы Айткена) играет одну из определяющих ролей в формировании облаков и поэтому от нее зависит климат Земли.

Между концентрацией пыли в атмосфере и глобальной температурой существует противофазная связь. Как видно из рис. 1, а, после извержений стратовулканов, во время которых забрасывалось в стратосферу большое количество пепла (микродисперсной пыли), в промежутке от 1 до 3 лет наблюдались понижения глобальной температуры Земли на 0.1-0.15°С. Противофазную связь подтверждают также результаты анализа ледовых кернов из скважин, пробуренных на ст. Восток (Антарктида) (рис. $1, \delta$). На этом рисунке представлены зависимости от времени концентрации пыли и температуры на ст. Восток за последние 420 тыс. лет [3]. Аналогичная противофазная зависимость получена и для Гренландии за последние 100 тысяч лет [4]. Эти наблюдения свидетельствуют о том, что чем больше пыли в атмосфере, тем холоднее климат. Обнаруженную выше противофазную связь между пылью и температурой нельзя объяснить влиянием пыли земного происхождения.

Кроме земных источников пыли, поступающей в атмосферу, существует другой источник — космос. Пыль из открытого космоса поступает в атмосферу в процессе движения Земли вокруг Солнца, которое происходит внутри зодиакального пылевого облака. Кроме того, она образуется в атмосфере Земли в результате разрушения метеорных потоков, с которыми сталкивается Земля.

Оценим количество космической пыли, которое вымывается из атмосферы с осадками за 1 год. Количество осадков, выпадающих на поверхность Земли, составляет величину приблизительно 5.1014 т/год. Положим, что средний радиус капель в тех облаках, из которых идут осадки, равен 10 мкм, а средний радиус частиц Айткена (космической пыли), на которых растут капли, $r_a \approx 0.03$ мкм. Масса капли облака больше массы частицы Айткена в $(4/3)\pi r_0^3 \rho_0 / [(4/3)\pi r_a^3 \rho_a] \approx 1.5 \cdot 10^8$, где $ho_0 = 1$ г/см³ — плотность воды, а $ho_a = 0.25$ г/см³ плотность космической пылевой частицы [10]. Поэтому масса космической пыли, вымываемой из атмосферы с осадками, равна приблизительно 3.106 т/год. По данным различных наблюдений, количество пыли космического происхождения, поступающей в атмосферу, лежит в пределах (0.25-14) · 10⁶ т/год [11].

Зодиакальное пылевое облако

Годовое обращение Земли вокруг Солнца происходит внутри зодиакального пылевого облака. Основным источником межпланетной пыли в этом облаке являются кометы, на движение которых влияет взаимное расположение планет. По этой причине планеты должны влиять на концентрацию пыли в зодиакальном облаке, а во временных вариациях этой пыли должны присутствовать биения, период которых зависит от периодов обращения планет. Эти же биения должны присутствовать и в вариациях глобальной температуры.

Спектральный анализ температурных данных и прогноз изменения климата в ближайшем будущем

Проведенный нами спектральный анализ температурных данных, представленных на рис. 1, *a*, показал, что в нем присутствуют линии с периодами 194, 64, 32 и 21 год. Из них первые две линии по своей амплитуде являются определяющими.

Найденные спектральные линии мы идентифицировали с биениями периодов следующих пар тяжелых планет. Линия с периодом 194 г. идентифицирована с биениями пары Нептун-Плутон (198 лет), линия 64 г. — пары Уран-Плутон (63 года), линия 32 г. — с полупериодом пары Уран-Плутон (31.5 года), и линия 21 год — с биениями пары Юпитер-Уран (20.8 года).

Найденные спектральные линии с периодами 194, 64, 32 и 21 год мы использовали для прогноза изменения климата в ближайшем будущем. Суммарная кривая глобальной температуры, построенная с учетом амплитуд, периодов и фаз этих линий, представлена на рис. 4. Из рисунка видно, что в ближайшие полвека будет происходить похолодание климата Земли. Оно составит приблизительно 0.5° С. При этом в 2020-е и 2040-е гг. должны наблюдаться небольшие потепления, во время которых могут иметь место засухи. Этот примерно 22-летний цикл наблюдается в засухах приблизительно с 1700 г.

Рис. 4. Прогноз изменения климата Земли на ближайшие полвека. Тонкая кривая — среднегодовые значения глобальной приземной температуры T_p , жирная кривая — сумма основных гармоник T_p , рассчитанная до 2050 г.

Как показано в [6], с 2000 г. началось небольшое увеличение альбедо Земли, что свидетельствует о начале похолодания климата. Однако, по данным сети метеорологических станций, процесс похолодания в настоящий момент еще не наступил. По-видимому, это связано с инерционностью климатической системы.

Проведенный нами анализ данных по концентрации радиоизотопа бериллия ¹⁰ Ве, полученных в Гренландии и в Антарктиде, показал наличие в них тех же периодов около 194, 64, 32 и 22 лет. В связи с этим сделанный выше прогноз о похолодании климата Земли в первой половине XXI в. получает дополнительное обоснование.

Взаимное расположение планет влияет не только на элементы орбиты Земли, но и на поступающую в атмосферу пыль космического происхождения. Этим можно объяснить наличие периодов Миланковича 100 тыс., 43 тыс., 24 тыс. лет в вариациях концентрации пыли и температуры в Антарктиде (рис. 1, δ). Происходившие изменения климата в последние 520 млн лет (рис. 1, β) можно связать с движением Солнечной системы через Галактику, в рукавах которой гигантских молекулярно-пылевых облаков больше, чем вне рукавов. Кометы из облака Оорта транспортируют эту пыль в зодиакальное пылевое облако и соответственно в атмосферу Земли [12–13].

Заключение

В работе изложен физический механизм влияния на облачность, альбедо и климат Земли поступающей в земную атмосферу пыли космического происхождения. Показано, что с вариациями концентрации этой пыли можно связать происходившие изменения климата. Дан прогноз о похолодании климата Земли в первой половине XXI в. Он сделан на основе результатов спектрального анализа температурных данных глобальной сети метеорологических станций за период 1880–2006 гг. с использованием информации о движениях планет, которые контролируют поступление пыли из космоса в атмосферу Земли.

Литература

- 1. Изменение климата. ЮНЕП РКИК ООН, 2003. С. 60.
- 2. ftp://ftp.ncdc.noaa.gov/pub/data/anomalies/ global_meanT_C.all.
- 3. *Petit J.R., Jouzel J., Raunaud D.* et al. // Nature. 1999. **399**. P. 429.
- Fuhrer K., Wolff E. W., Johnsen S.J. // J. Geophys. Res. 1999. 104, N D24. P. 31043.
- Veizer J., Godderis Y., Francois L.M. // Nature. 2000.
 408. P. 698.
- 6. Palle E., Goode P.R., Montanes-Rodriguez P., Koonin S.E. // Eos. 2006. 87, N 4. P. 37.
- 7. Jain K., Hansan S.S. // J. Geophys. Res. 2002. A03105, doi 10.1029/ 203 JA 010222.
- 8. *Lioy Ku-Nah*. An introduction to atmospheric radiation. N.Y.; L., 1980; *Лиоу Ку-Нан*. Основы радиационных процессов в атмосфере. Л., 1984.
- 9. Hoyt D.V., Schatten K.H. // J. Geophys. Res. 1993. 98, N A11. P. 18895.
- 10. Аллен К.У. Астрофизические величины. М., 1977.
- 11. Parkin D. W., Tilles D. // Science. 1968. 159. P. 936.
- Ермаков В.И., Охлопков В.П., Стожков Ю.И. // Краткие сообщения по физике. М.: ФИАН, 2006. № 3. С. 41.
- Мазеева О.А. // Астрономический вестник. 2004. 38, № 4. С. 37.

Поступила в редакцию 08.09.06