ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

УДК 539.17+519.6

ДВУМЕРНЫЙ ВЕЙВЛЕТ-АНАЛИЗ СМОДЕЛИРОВАННЫХ УГЛОВЫХ РАСПРЕДЕЛЕНИЙ ЧАСТИЦ В СТОЛКНОВЕНИЯХ РЕЛЯТИВИСТСКИХ ЯДЕР

В. Л. Коротких, Г. Х. Эйюбова

(НИИЯФ; кафедра атомного ядра и квантовой теории столкновений)

E-mail: eiiubova@lav01.sinp.msu.ru

Работа посвящена разработке метода анализа многочастичного события со сложной структурой с помощью дискретного вейвлет-преобразования. Проанализированы двумерные гистограммы, соответствующие заданной функции, а также события, смоделированные с помощью генератора ядро-ядерных столкновений при энергии в системе ценра масс $\sqrt{s} = 5.5$ ТэВ. Показано, что вейвлет-анализ хорошо устраняет фон, выделяет кольцевую структуру многочастичного события и позволяет снизить порог по поперечной энергии струй, при котором возможно выделение струи над фоном.

Введение

В связи с экспериментами по изучению ядро-ядерных столкновений возникает необходимость в развитии методов анализа событий с высокой множественностью частиц. Физика центральных ядро-ядерных столкновений намного сложнее, чем представление о простой независимой суперпозиции нуклон-нуклонных столкновений. Уже сейчас первые результаты экспериментов на коллайдере RHIC (Брукхевенская национальная лаборатория, США) по столкновениям Au + Au при энергии в системе центра масс $\sqrt{s} = 200$ ГэВ на нуклон свидетельствуют о проявлении коллективных эффектов. Подробный анализ результатов на RHIC представлен в обзорных работах всех четырех экспериментальных групп BRAHMS [1], PHOBOS [2], STAR [3], PHENIX [4].

Пока еще нет уверенности в образовании кварк-глюонной плазмы (КГП), но уже можно утверждать, что формируется состояние плотной партонной материи, которое не может быть описано с помощью обычных цвето-нейтральных адронов. Это состояние не достигается в протон-протонных, а также в периферических ядро-ядерных взаимодействиях. Для этого необходимы центральные ядро-ядерные столкновения, где можно достичь высокой плотности энергии и термализации системы.

Среди ряда предложенных признаков КГП особое место занимает исследование так называемой топологии отдельного события, т. е. различного рода структурных особенностей в угловых распределениях частиц (корреляций, флуктуаций, струй).

Наиболее яркой структурой в угловом распределении частиц является струя адронов — поток частиц высокой энергии в узком телесном угле. Сравнение рождения струй в ядро-ядерных и протон-протонных столкновениях или в центральных и периферических ядро-ядерных столкновениях позволяет определить степень подавления струй в предполагаемой партонной материи. Этот эффект — один из главных признаков КГП [3].

Другой причиной неоднородностей в распределении частиц могут служить мини-струи. В работе [5] наблюдаемые кластеры частиц при малых поперечных энергиях $E_T \sim 5 \ \Gamma$ эВ ($E_T = E \sin \theta$) в протон-протонных столкновениях при энергии $\sqrt{s} = 1.9$ ТэВ интерпретируются как мини-струи в квантовой хромодинамике (КХД).

Физика мини-струй является новым направлением, позволяющим исследовать флуктуации адронов при невысоких поперечных импульсах p_T . Струи с высокими р_Т незначительно искажаются партонной средой из-за большой энергии партонов источников струй. Мини-струи при средних p_T имеют более короткие длины пробега и с большей вероятностью диссипируют в партонной среде, теряя память о начальных корреляциях и максимальным образом изменяя свои характеристики при взаимодействии со средой [6]. Сравнение топологии события с мини-струями в центральных и периферических столкновениях ядро-ядро позволит точнее определить плотность и размеры области партонной среды, что может характеризовать степень ее термодинамического равновесия.

Для выделения струй были разработаны различные методы, которые неплохо справлялись в экспериментах по столкновениям $e^+ + e^-$ и $p + \bar{p}$. Их можно разделить на две группы. Одна из них

использует близость частиц в пространственных координатах [7], другая — в импульсном пространстве [8]. Но все они основаны на предположении, что адроны струи находятся «рядом» с осью струи. Будем называть эти методы конусовыми алгоритмами. В столкновениях с высокой энергией реконструкция струй обычными методами становится затруднительной из-за большого числа фоновых частиц. По различным оценкам множественность заряженных частиц в центральном столкновении Pb + Pb при энергиях $\sqrt{s} = 5.5$ TэB на Большом адронном коллайдере в ЦЕРНе составит $(dN_{\rm ch}/d\eta)_{\eta=0} = 3000 \div 8000$, где $\eta = -\ln({
m tg}\,\theta/2)$ псевдобыстрота, переменная, часто используемая вместо полярного угла θ в физике высоких энергий. Поэтому обычные конусовые алгоритмы модифицируют различными способами для учета вклада фона [9]. Эти алгоритмы не могут обнаруживать более сложную структуру в угловом распределении типа кольцевой структуры.

В настоящее время широкое применение находит новый метод анализа структуры события с помощью вейвлет-преобразования. Дискретное вейвлет-преобразование (ДВП) [10] и преобразование с непрерывными вейвлет-функциями [11] использовалось для анализа угловых распределений и обнаружило кольцевую структуру в двумерном угловом распределении. Такая структура интерпретируется как глюонное черенковское излучение быстрого партона при прохождении плотной партонной среды. Вейвлет-метод зарекомендовал себя как мощный инструмент для анализа флуктуаций в двумерном угловом распределении [6, 12, 13].

Настоящая работа посвящена разработке дискретного вейвлет преобразования для анализа топологии многочастичного события со струями, мини-струями и кольцевыми структурами при высоких энергиях. Топология события сильно зависит от плотности и пространственной формы сгустка нового вещества, образующегося в ядро-ядерных столкновениях.

Дискретное вейвлет-преобразование

Во многих учебниках по вейвлет-функциям (см., напр., [14-16]) показано, что для разложения двумерной функции f(x, y) по вейвлетам можно воспользоваться коэффициентами разложения для одномерного случая.

Существует ортонормированный базис масштабирующих $\{\varphi_{j,n}(x)\}$ и вейвлет-функций $\{\psi_{j,n}(x)\}$, по которым любая квадратично интегрируемая функция раскладывается в ряд

$$f(x) = \sum_{n = -\infty}^{\infty} a_{j_0,n} \varphi_{j_0,n}(x) + \sum_{j = j_0} \sum_{n = -\infty}^{\infty} d_{j,n} \psi_{j,n}(x).$$

Можно выбрать вейвлеты, которые определяются конечным числом вещественных коэффициентов h[n], называемых фильтром. Коэффициенты h[n] задаются для масштабирующей функции $\varphi(x)$, а коэффициенты $g[n] = (-1)^{1-n}h[1-n] - для$ вейвлет-функции $\psi(x)$. Тогда ортонормированный базис строится как семейство функций:

$$\{\psi_{i,n}(x)\} = 2^{j/2}\psi(2^{j}x - n)\}_{j=0,1,\dots}$$

Вейвлет-функция $\psi_{j,n}(x)$ растягивается при изменении масштаба в 2^j раз и сдвигается по оси xна n. Это позволяет найти особенности функции f(x) не только во всей области x (как в Фурье-преобразовании), но и в отдельных узких местах, соответствующих мелкому масштабу, и эффективно вычитать плавный фон [17]. В настоящей работе мы использовали вейвлеты Добеши D^8 [14].

Большим преимуществом вейвлет-анализа явилась возможность так называемого быстрого вейвлет-преобразования (БВП) с помощью итерационной процедуры перехода от одного масштаба к другому с помощью конечного числа коэффициентов h[n] и g[n].

Для двумерной функции f(x, y) используется сепарабельная форма вейвлет-функций [14]. Тогда ортонормированный базис строится как семейство вейвлетов $\{\psi_{i,n_1,n_2}^1, \psi_{i,n_1,n_2}^2, \psi_{i,n_1,n_2}^3\}$:

$$\begin{split} \psi_{j,n_1,n_2}^1(x_1,x_2) &= 2^j \varphi(2^j x_1 - n_1) \psi(2^j x_2 - n_2), \\ \psi_{j,n_1,n_2}^2(x_1,x_2) &= 2^j \psi(2^j x_1 - n_1) \varphi(2^j x_2 - n_2), \\ \psi_{j,n_1,n_2}^3(x_1,x_2) &= 2^j \psi(2^j x_1 - n_1) \psi(2^j x_2 - n_2). \end{split}$$

Сепарабельная двумерная свертка может быть разбита на произведение одномерных сверток по строкам и столбцам. Подробное описание алгоритма БВП представлено в монографии [14].

Вейвлет-анализ двумерной структуры углового распределения частиц

Вейвлет-анализ называют математическим микроскопом, так как с его помощью можно рассматривать сигнал с различным разрешением и выделять структуру на различных масштабах. На рис. 1, *а* изображена гистограмма из функции f(x, y), имеющей узкий пик и крупномасштабную кольцевую структуру:

$$f(x,y) = \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} + \frac{\sin(\theta)}{[1+a\,\mathrm{tg}^4(\theta)]^2\cos^3(\theta)},$$
(1)

$$\theta = \operatorname{arctg} \frac{\sqrt{x^2+y^2}}{b}.$$

С помощью вейвлет-анализа можно выявить крупномасштабную структуру этой гистограммы (рис. 1, δ), а также узкий пик (рис. 1, e) в зависимости от того, какие коэффициенты $d_{i,n}$ используются

Рис. 1. Гистограмма из функции f(x, y) (1) (*a*) и восстановление гистограммы по вейвлет-ряду при $d_{6,7} \neq 0$ и $d_j = 0$ для других значений j (б). Узкий пик удален, кольцевая структура сохранена. Восстановление гистограммы по вейвлет-ряду при $d_{1,2,3} \neq 0$ и $d_j = 0$ для других значений j; выделен узкий пик (*в*)

Рис. 2. Распределение поперечной энергии E_T по переменным η и φ : (*a*) событие, сгенерированное HIJING в столкновении p + p с энергией струи $E_T \approx 72$ ГэВ; (б) сумма гистограмм этого струйного события и фона, сгенерированного с помощью HIJING без рождения струй; (*в*) событие на рис. 3, б после реконструкции струи предложенным методом

Puc. 3. Событие со струями с энергией $E_T = 31$ и 22 ГэВ (*a*); то же событие, сложенное с фоном (*б*); событие на рис. 3, *б* после реконструкции струи предложенным методом (*в*)

при восстановлении (соответствующие крупным или мелким масштабам). Видно, что при рассмотрении гистограммы на соответствующих масштабах выделяется кольцевая структура, изначально присутствующая в функции. Таким образом, вейвлет-анализ позволяет обнаруживать сложные крупномасштабные структуры, которые в столкновениях релятивистских ядер можно рассматривать как фон по отношению к струям.

Для демонстрации других возможностей метода вейвлет-анализа были смоделированы отдельно струи с различной поперечной энергией E_T (генератор столкновений HIJING [18], протон-протонные соударения с $\sqrt{s} = 5500$ ГэВ) и фон, полученный в столкновениях Pb + Pb с множественностью частиц в центральном диапазоне псевдобыстрот $(dN/d\eta)_{\eta=0} = 6000$. Затем событие со струями складывалось с фоном. Струи адронов с большими E_T , как правило, хорошо коллимированы относительно оси струи, поэтому методом вейвлет-анализа будем искать узкие пики в распределении $\frac{d^2E_T}{d\varphi d\eta}$. Алгоритм выделения струй с помощью вейвлет-анализа состоит в следующем.

1. Выполняется вейвлет-разложение заданного распределения в событии.

2. Вычисляется плавный фон распределения, который вычитается из распределения события.

3. Отбираются $d_{j,n}$ — коэффициенты, превышающие некоторый предел.

4. Выполняется восстановление функции с выбранными коэффициентами $d_{i,n}$.

На рис. 2, *a*, *б* показано событие со струями с энергией $E_T = 71.9$ ГэВ без фона и с фоном соответственно, а на рис. 2, *в* — это же событие с выделением струи предложенным методом. На рис. 3 — то же, но с энергиями струй $E_T = 31$ и 22 ГэВ. Из сравнения рис. 3, *б* и 3, *в* видно, что пик с энегией 22 ГэВ хорошо выделяется, хотя фон также дает пики с энергией, сравнимой с этим пиком.

Заключение

На примере двумерных функций показано, что ДВП хорошо выделяет широкие и узкие структуры при соответствующем выборе масштаба *j* вейвлет-функции. Такие структуры в реальном двумерном распределении соответствуют разным эффектам в ядро-ядерном столкновении. Выделение кольцеобразной структуры невозможно в стандартных конусовых алгоритмах поиска струй, но становится простым в двумерном дискретном вейвлет-преобразовании.

Обрезая коэффициенты разложения по вейвлетам меньше определенного порога, можно «вычистить» событие от фона и крупномасштабных флуктуаций. Можно учесть структуру фона по обеим переменным, эллиптический поток по азимутальному углу и вид η -распределения.

Вейвлет-анализ позволяет выделять струи по крайней мере с $E_T > E_{T \min} = 20$ ГэВ, что трудно сделать другими методами для событий с большой множественностью в ядро-ядерных столкновениях.

Метод хорошо выделяет струи, имеющие лидирующую частицу с большой E_T , даже если энергия E_T сравнима с флуктуациями фона.

Метод может найти применение как в физике при больших *p_T* с рождением струй, так и в физике мини-струй со средними значениями *p_T*.

Авторы благодарят профессоров Л.И. Сарычеву и И.М. Дремина, д.ф.-м.н. А.М. Снигирева и к.ф.-м.н. О.Л. Кодолову за полезные обсуждения и конструктивные предложения.

Литература

- 1. Arsene I., Bearden I.G., Beavis D. et al. // Nucl. Phys. 2005. A757. P. 1.
- 2. Back B., Baker M.D., Ballintjin M. et al. // Nucl. Phys. 2005. A757. P. 28.
- Adams J., Aggarwal M.M., Ahammed J. et al. // Nucl. Phys. 2005. A757. P. 102.
- Adcox K., Adler S.S., Afanasiev S. et al. // Nucl. Phys. 2005. A757. P. 184.
- 5. Albajar C., Albrow M.G., Allkofer O.C. et al. // Nucl. Phys. 1988. **B309** P. 405.
- Adams J., Aggarwal M.M., Ahammed J. et al. // Phys. Rev. 2005. C77. P. 031901.
- Abe F., Amidei D., Apollinari G. et al. // Phys. Rev. 1992. D45. P. 1448.
- Catani S., Dokshitzer Yu.L., Olsson M. et al. // Phys. Lett. 1991. B269. P. 432.
- 9. Vardanyan I.N., Lokhtin I.P., Sarycheva L.I. et al. // Ядерная физика. 2005. **68**. С. 357.
- Dremin I.M., Ivanov O.V., Kalinin S.A. et al. // Phys. Lett. 2001. B499. P. 97.
- 11. Uzhinskii V.V., Navotny V.S., Ososkov G.A. et al. // 2002. arXiv:hep-ex/0206003.
- Berden I., Boggild H., Boissevain J. et al. // Phys. Rev. 2002. C65. P. 044903.
- 13. Kopytine M. // 2002. arXiv:nucl-ex/0211015.
- 14. Mallat C. A wavelet tour of signal processing. Academic Press, 1999.
- 15. Добеши И. Десять лекций по вейвлетам. М.; Ижевск, 2001.
- 16. Дремин И.М., Иванов О.В., Нечитайло В.А. // УФН. 2001. **171**. С. 465.
- 17. *Коротких В.Л*. Препринт НИИЯФ МГУ 2002-6/690. М., 2002.
- Wang X.N., Gyulassy M. // Phys. Rev. 1991. D44. P. 3501.

Поступила в редакцию 19.05.06